BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 21534568)

  • 41. Packaging guest proteins into the encapsulin nanocompartment from Rhodococcus erythropolis N771.
    Tamura A; Fukutani Y; Takami T; Fujii M; Nakaguchi Y; Murakami Y; Noguchi K; Yohda M; Odaka M
    Biotechnol Bioeng; 2015 Jan; 112(1):13-20. PubMed ID: 24981030
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition.
    Tajparast M; Frigon D
    BMC Syst Biol; 2015 Aug; 9():43. PubMed ID: 26248853
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Whole gene transcriptomic analysis of PCB/biphenyl degrading Rhodococcus jostii RHA1.
    Sha'arani S; Hara H; Araie H; Suzuki I; Mohd Noor MJM; Akhir FNM; Othman N; Zakaria Z
    J Gen Appl Microbiol; 2019 Sep; 65(4):173-179. PubMed ID: 30686798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Basidiomycete DyPs: Genomic diversity, structural-functional aspects, reaction mechanism and environmental significance.
    Linde D; Ruiz-Dueñas FJ; Fernández-Fueyo E; Guallar V; Hammel KE; Pogni R; Martínez AT
    Arch Biochem Biophys; 2015 May; 574():66-74. PubMed ID: 25637654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds.
    Rahmanpour R; Rea D; Jamshidi S; Fülöp V; Bugg TD
    Arch Biochem Biophys; 2016 Mar; 594():54-60. PubMed ID: 26901432
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering of
    Yasin R; Rashid GMM; Ali I; Bugg TDH
    Heliyon; 2023 Sep; 9(9):e19511. PubMed ID: 37810037
    [No Abstract]   [Full Text] [Related]  

  • 47. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I.
    Regelsberger G; Jakopitsch C; Engleder M; Rüker F; Peschek GA; Obinger C
    Biochemistry; 1999 Aug; 38(32):10480-8. PubMed ID: 10441144
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases.
    Ruiz-Dueñas FJ; Morales M; García E; Miki Y; Martínez MJ; Martínez AT
    J Exp Bot; 2009; 60(2):441-52. PubMed ID: 18987391
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DyP-Type Peroxidases: Recent Advances and Perspectives.
    Sugano Y; Yoshida T
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34074047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Autocatalytic formation of a hydroxy group at C beta of trp171 in lignin peroxidase.
    Blodig W; Doyle WA; Smith AT; Winterhalter K; Choinowski T; Piontek K
    Biochemistry; 1998 Jun; 37(25):8832-8. PubMed ID: 9636023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dual two-component regulatory systems are involved in aromatic compound degradation in a polychlorinated-biphenyl degrader, Rhodococcus jostii RHA1.
    Takeda H; Shimodaira J; Yukawa K; Hara N; Kasai D; Miyauchi K; Masai E; Fukuda M
    J Bacteriol; 2010 Sep; 192(18):4741-51. PubMed ID: 20622058
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MnII is not a productive substrate for wild-type or recombinant lignin peroxidase isozyme H2.
    Sollewijn Gelpke MD; Sheng D; Gold MH
    Arch Biochem Biophys; 2000 Sep; 381(1):16-24. PubMed ID: 11019815
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis.
    Timofeevski SL; Nie G; Reading NS; Aust SD
    Biochem Biophys Res Commun; 1999 Mar; 256(3):500-4. PubMed ID: 10080927
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pathways for degradation of lignin in bacteria and fungi.
    Bugg TD; Ahmad M; Hardiman EM; Rahmanpour R
    Nat Prod Rep; 2011 Nov; 28(12):1883-96. PubMed ID: 21918777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elucidation of microbial lignin degradation pathways using synthetic isotope-labelled lignin.
    Alruwaili A; Rashid GMM; Sodré V; Mason J; Rehman Z; Menakath AK; Cheung D; Brown SP; Bugg TDH
    RSC Chem Biol; 2023 Jan; 4(1):47-55. PubMed ID: 36685258
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases.
    Sainsbury PD; Mineyeva Y; Mycroft Z; Bugg TD
    Bioorg Chem; 2015 Jun; 60():102-9. PubMed ID: 25984987
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lignin-degrading enzymes.
    Pollegioni L; Tonin F; Rosini E
    FEBS J; 2015 Apr; 282(7):1190-213. PubMed ID: 25649492
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase.
    Taurog A; Dorris ML; Doerge DR
    Arch Biochem Biophys; 1996 Jun; 330(1):24-32. PubMed ID: 8651700
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidation of 1,2,4,5-tetramethoxybenzene by lignin peroxidase of Phanerochaete chrysosporium.
    Koduri RS; Whitwam RE; Barr D; Aust SD; Tien M
    Arch Biochem Biophys; 1996 Feb; 326(2):261-5. PubMed ID: 8611032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase.
    Hammel KE; Mozuch MD; Jensen KA; Kersten PJ
    Biochemistry; 1994 Nov; 33(45):13349-54. PubMed ID: 7947743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.