These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 21534568)

  • 61. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase.
    Hammel KE; Mozuch MD; Jensen KA; Kersten PJ
    Biochemistry; 1994 Nov; 33(45):13349-54. PubMed ID: 7947743
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1.
    Patrauchan MA; Florizone C; Eapen S; Gómez-Gil L; Sethuraman B; Fukuda M; Davies J; Mohn WW; Eltis LD
    J Bacteriol; 2008 Jan; 190(1):37-47. PubMed ID: 17965160
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The reaction kinetics of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1 provide an understanding of the para-hydroxylation enzyme catalytic cycle.
    Sucharitakul J; Tongsook C; Pakotiprapha D; van Berkel WJ; Chaiyen P
    J Biol Chem; 2013 Dec; 288(49):35210-21. PubMed ID: 24129570
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transformation of tetrabromobisphenol A by Rhodococcus jostii RHA1: Effects of heavy metals.
    Xu S; Wang YF; Yang LY; Ji R; Miao AJ
    Chemosphere; 2018 Apr; 196():206-213. PubMed ID: 29304458
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Oxidation of a tetrameric nonphenolic lignin model compound by lignin peroxidase.
    Mester T; Ambert-Balay K; Ciofi-Baffoni S; Banci L; Jones AD; Tien M
    J Biol Chem; 2001 Jun; 276(25):22985-90. PubMed ID: 11304528
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders.
    Ahmad M; Taylor CR; Pink D; Burton K; Eastwood D; Bending GD; Bugg TD
    Mol Biosyst; 2010 May; 6(5):815-21. PubMed ID: 20567767
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Vanillin catabolism in Rhodococcus jostii RHA1.
    Chen HP; Chow M; Liu CC; Lau A; Liu J; Eltis LD
    Appl Environ Microbiol; 2012 Jan; 78(2):586-8. PubMed ID: 22057861
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an alpha-carbonyl model compound.
    Tuor U; Wariishi H; Schoemaker HE; Gold MH
    Biochemistry; 1992 Jun; 31(21):4986-95. PubMed ID: 1599925
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Physiological adaptation of the Rhodococcus jostii RHA1 membrane proteome to steroids as growth substrates.
    Haußmann U; Wolters DA; Fränzel B; Eltis LD; Poetsch A
    J Proteome Res; 2013 Mar; 12(3):1188-98. PubMed ID: 23360181
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1.
    Dávila Costa JS; Herrero OM; Alvarez HM; Leichert L
    Microbiology (Reading); 2015 Mar; 161(Pt 3):593-610. PubMed ID: 25564499
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism.
    Hernández MA; Mohn WW; Martínez E; Rost E; Alvarez AF; Alvarez HM
    BMC Genomics; 2008 Dec; 9():600. PubMed ID: 19077282
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Protein engineering of Pseudomonas fluorescens peroxidase Dyp1B for oxidation of phenolic and polymeric lignin substrates.
    Rahman Pour R; Ehibhatiomhan A; Huang Y; Ashley B; Rashid GM; Mendel-Williams S; Bugg TDH
    Enzyme Microb Technol; 2019 Apr; 123():21-29. PubMed ID: 30686347
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii.
    Szőköl J; Rucká L; Šimčíková M; Halada P; Nešvera J; Pátek M
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8267-79. PubMed ID: 24938209
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In vitro reconstitution of the catabolic reactions catalyzed by PcaHG, PcaB, and PcaL: the protocatechuate branch of the β-ketoadipate pathway in Rhodococcus jostii RHA1.
    Yamanashi T; Kim SY; Hara H; Funa N
    Biosci Biotechnol Biochem; 2015; 79(5):830-5. PubMed ID: 25558786
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A Dye-Decolorizing Peroxidase from Vibrio cholerae.
    Uchida T; Sasaki M; Tanaka Y; Ishimori K
    Biochemistry; 2015 Nov; 54(43):6610-21. PubMed ID: 26431465
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1.
    Rosłoniec KZ; Wilbrink MH; Capyk JK; Mohn WW; Ostendorf M; van der Geize R; Dijkhuizen L; Eltis LD
    Mol Microbiol; 2009 Dec; 74(5):1031-43. PubMed ID: 19843222
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of alkoxy groups on arene rings of lignin β-O-4 model compounds on the efficiencies of single electron transfer-promoted photochemical and enzymatic C-C Bond Cleavage Reactions.
    Lim SH; Nahm K; Ra CS; Cho DW; Yoon UC; Latham JA; Dunaway-Mariano D; Mariano PS
    J Org Chem; 2013 Sep; 78(18):9431-43. PubMed ID: 23992466
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer.
    Min K; Gong G; Woo HM; Kim Y; Um Y
    Sci Rep; 2015 Feb; 5():8245. PubMed ID: 25650125
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production.
    Xiong X; Wang X; Chen S
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1017-25. PubMed ID: 27143134
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse.
    McLeod MP; Warren RL; Hsiao WW; Araki N; Myhre M; Fernandes C; Miyazawa D; Wong W; Lillquist AL; Wang D; Dosanjh M; Hara H; Petrescu A; Morin RD; Yang G; Stott JM; Schein JE; Shin H; Smailus D; Siddiqui AS; Marra MA; Jones SJ; Holt R; Brinkman FS; Miyauchi K; Fukuda M; Davies JE; Mohn WW; Eltis LD
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15582-7. PubMed ID: 17030794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.