These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 21534576)
1. A theoretical investigation of the plausibility of reactions between ammonia and carbonyl species (formaldehyde, acetaldehyde, and acetone) in interstellar ice analogs at ultracold temperatures. Chen L; Woon DE J Phys Chem A; 2011 May; 115(20):5166-83. PubMed ID: 21534576 [TBL] [Abstract][Full Text] [Related]
2. Theoretical study of photochemical hydrogen abstraction by triplet aliphatic carbonyls by using density functional theory. Firme CL; Garden SJ; de Lucas NC; Nicodem DE; Correa RJ J Phys Chem A; 2013 Jan; 117(2):439-50. PubMed ID: 23249266 [TBL] [Abstract][Full Text] [Related]
3. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase. Lasne J; Laffon C; Parent P Phys Chem Chem Phys; 2012 Dec; 14(45):15715-21. PubMed ID: 23090634 [TBL] [Abstract][Full Text] [Related]
4. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations. Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751 [TBL] [Abstract][Full Text] [Related]
5. Structure, stability, and infrared spectroscopy of (H2O)nNH4(+) clusters: a theoretical study at zero and finite temperature. Douady J; Calvo F; Spiegelman F J Chem Phys; 2008 Oct; 129(15):154305. PubMed ID: 19045191 [TBL] [Abstract][Full Text] [Related]
6. Radical routes to interstellar glycolaldehyde. The possibility of stereoselectivity in gas-phase polymerization reactions involving CH(2)O and ˙CH(2)OH. Wang T; Bowie JH Org Biomol Chem; 2010 Oct; 8(20):4757-66. PubMed ID: 20714667 [TBL] [Abstract][Full Text] [Related]
7. Formation of conjugate adducts in the reactions of malonaldehyde-acetaldehyde and malonaldehyde-formaldehyde with guanosine. Pluskota-Karwatka D; Le Curieux F; Munter T; Sjöholm R; Kronberg L Chem Res Toxicol; 2005 Feb; 18(2):300-7. PubMed ID: 15720136 [TBL] [Abstract][Full Text] [Related]
8. Structural rearrangements and magic numbers in reactions between pyridine-containing water clusters and ammonia. Ryding MJ; Ruusuvuori K; Andersson PU; Zatula AS; McGrath MJ; Kurtén T; Ortega IK; Vehkamäki H; Uggerud E J Phys Chem A; 2012 May; 116(20):4902-8. PubMed ID: 22559268 [TBL] [Abstract][Full Text] [Related]
9. Experimental and theoretical study of the microsolvation of sodium atoms in methanol clusters: differences and similarities to sodium-water and sodium-ammonia. Dauster I; Suhm MA; Buck U; Zeuch T Phys Chem Chem Phys; 2008 Jan; 10(1):83-95. PubMed ID: 18075686 [TBL] [Abstract][Full Text] [Related]
10. Ammonia and formaldehyde participate in the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in addition to creati(ni)ne and phenylacetaldehyde. Zamora R; Alcón E; Hidalgo FJ Food Chem; 2014 Jul; 155():74-80. PubMed ID: 24594156 [TBL] [Abstract][Full Text] [Related]
11. Investigation of proton transport tautomerism in clusters of protonated nucleic acid bases (cytosine, uracil, thymine, and adenine) and ammonia by high-pressure mass spectrometry and ab initio calculations. Wu R; McMahon TB J Am Chem Soc; 2007 Jan; 129(3):569-80. PubMed ID: 17227020 [TBL] [Abstract][Full Text] [Related]
12. Theoretical investigation of N-nitrosodimethylamine formation from dimethylamine nitrosation catalyzed by carbonyl compounds. Lv CL; Liu YD; Zhong RG J Phys Chem A; 2009 Jan; 113(4):713-8. PubMed ID: 19119806 [TBL] [Abstract][Full Text] [Related]
13. Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: formation of cyclic deoxyguanosine adducts and formaldehyde cross-links. Cheng G; Shi Y; Sturla SJ; Jalas JR; McIntee EJ; Villalta PW; Wang M; Hecht SS Chem Res Toxicol; 2003 Feb; 16(2):145-52. PubMed ID: 12588185 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study. Jena NR; Mishra PC J Phys Chem B; 2005 Jul; 109(29):14205-18. PubMed ID: 16852784 [TBL] [Abstract][Full Text] [Related]
15. Interaction of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with the surface of water ice and HNO3·3H2O ice. Lasne J; Laffon C; Parent P Phys Chem Chem Phys; 2012 Jan; 14(2):697-704. PubMed ID: 22109680 [TBL] [Abstract][Full Text] [Related]
16. How water molecules modulate the hydration of CO2 in water solution: insight from the cluster-continuum model calculations. Wang B; Cao Z J Comput Chem; 2013 Feb; 34(5):372-8. PubMed ID: 23065741 [TBL] [Abstract][Full Text] [Related]
17. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone. Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381 [TBL] [Abstract][Full Text] [Related]
18. Ab initio n-electron valence state perturbation theory study of the adiabatic transitions in carbonyl molecules: formaldehyde, acetaldehyde, and acetone. Angeli C; Borini S; Ferrighi L; Cimiraglia R J Chem Phys; 2005 Mar; 122(11):114304. PubMed ID: 15836212 [TBL] [Abstract][Full Text] [Related]
19. Airborne carbonyls from motor vehicle emissions in two highway tunnels. Grosjean D; Grosjean E Res Rep Health Eff Inst; 2002 Jan; (107):57-78; discussion 79-92. PubMed ID: 11954678 [TBL] [Abstract][Full Text] [Related]