These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21535456)

  • 1. Differentiable contributions of human amygdalar subregions in the computations underlying reward and avoidance learning.
    Prévost C; McCabe JA; Jessup RK; Bossaerts P; O'Doherty JP
    Eur J Neurosci; 2011 Jul; 34(1):134-45. PubMed ID: 21535456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separate amygdala subregions signal surprise and predictiveness during associative fear learning in humans.
    Boll S; Gamer M; Gluth S; Finsterbusch J; Büchel C
    Eur J Neurosci; 2013 Mar; 37(5):758-67. PubMed ID: 23278978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based fMRI and its application to reward learning and decision making.
    O'Doherty JP; Hampton A; Kim H
    Ann N Y Acad Sci; 2007 May; 1104():35-53. PubMed ID: 17416921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of the amygdala to reward expectancy and choice signals in human prefrontal cortex.
    Hampton AN; Adolphs R; Tyszka MJ; O'Doherty JP
    Neuron; 2007 Aug; 55(4):545-55. PubMed ID: 17698008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder.
    Etkin A; Prater KE; Schatzberg AF; Menon V; Greicius MD
    Arch Gen Psychiatry; 2009 Dec; 66(12):1361-72. PubMed ID: 19996041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of specific and general Pavlovian-to-Instrumental Transfer within human amygdalar subregions: a high-resolution fMRI study.
    Prévost C; Liljeholm M; Tyszka JM; O'Doherty JP
    J Neurosci; 2012 Jun; 32(24):8383-90. PubMed ID: 22699918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the amygdala and rostral anterior cingulate in encoding expected outcomes during learning.
    Kosson DS; Budhani S; Nakic M; Chen G; Saad ZS; Vythilingam M; Pine DS; Blair RJ
    Neuroimage; 2006 Feb; 29(4):1161-72. PubMed ID: 16387514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning.
    Schoenbaum G; Chiba AA; Gallagher M
    Nat Neurosci; 1998 Jun; 1(2):155-9. PubMed ID: 10195132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of amygdalar nuclei in alimentary and defensive conditioned reflexes in the rat].
    Chaĭchenko GM; Bogach PG; Makarchuk NE
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1982; 32(3):426-32. PubMed ID: 7113444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The indirect amygdala-dorsal striatum pathway mediates conditioned freezing: insights on emotional memory networks.
    Ferreira TL; Shammah-Lagnado SJ; Bueno OF; Moreira KM; Fornari RV; Oliveira MG
    Neuroscience; 2008 Apr; 153(1):84-94. PubMed ID: 18367339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional organization of the human amygdala in appetitive learning.
    Kolada E; Bielski K; Falkiewicz M; Szatkowska I
    Acta Neurobiol Exp (Wars); 2017; 77(2):118-127. PubMed ID: 28691716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain.
    Valentin VV; O'Doherty JP
    J Neurophysiol; 2009 Dec; 102(6):3384-91. PubMed ID: 19793875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value.
    Gottfried JA; Dolan RJ
    Nat Neurosci; 2004 Oct; 7(10):1144-52. PubMed ID: 15361879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amygdalar unit activity during three learning tasks: eyeblink classical conditioning, Pavlovian fear conditioning, and signaled avoidance conditioning.
    Rorick-Kehn LM; Steinmetz JE
    Behav Neurosci; 2005 Oct; 119(5):1254-76. PubMed ID: 16300433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amygdala involvement in human avoidance, escape and approach behavior.
    Schlund MW; Cataldo MF
    Neuroimage; 2010 Nov; 53(2):769-76. PubMed ID: 20600966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The central extended amygdala network as a proposed circuit underlying reward valuation.
    Waraczynski MA
    Neurosci Biobehav Rev; 2006; 30(4):472-96. PubMed ID: 16243397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief.
    Seymour B; O'Doherty JP; Koltzenburg M; Wiech K; Frackowiak R; Friston K; Dolan R
    Nat Neurosci; 2005 Sep; 8(9):1234-40. PubMed ID: 16116445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amygdala neurons mediate acquisition but not maintenance of instrumental avoidance behavior in rabbits.
    Poremba A; Gabriel M
    J Neurosci; 1999 Nov; 19(21):9635-41. PubMed ID: 10531465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amygdala inhibitory circuits and the control of fear memory.
    Ehrlich I; Humeau Y; Grenier F; Ciocchi S; Herry C; Lüthi A
    Neuron; 2009 Jun; 62(6):757-71. PubMed ID: 19555645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.