These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 21535607)

  • 1. Hydrolysis of Chlorella by Cellulomonas sp. YJ5 cellulases and its biofunctional properties.
    Yin LJ; Jiang ST; Pon SH; Lin HH
    J Food Sci; 2010; 75(9):H317-23. PubMed ID: 21535607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of cellulase-producing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas sp. YJ5.
    Yin LJ; Huang PS; Lin HH
    J Agric Food Chem; 2010 Sep; 58(17):9833-7. PubMed ID: 20687562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources.
    Sánchez-Herrera LM; Ramos-Valdivia AC; de la Torre M; Salgado LM; Ponce-Noyola T
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):589-95. PubMed ID: 17899068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenolic extraction from apple peel by cellulases from Thermobifida fusca.
    Kim YJ; Kim DO; Chun OK; Shin DH; Jung H; Lee CY; Wilson DB
    J Agric Food Chem; 2005 Nov; 53(24):9560-5. PubMed ID: 16302777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase.
    Singh R; Varma AJ; Seeta Laxman R; Rao M
    Bioresour Technol; 2009 Dec; 100(24):6679-81. PubMed ID: 19683917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a thermostable endoglucanase from Cellulomonas fimi ATCC484.
    Saxena H; Hsu B; de Asis M; Zierke M; Sim L; Withers SG; Wakarchuk W
    Biochem Cell Biol; 2018 Feb; 96(1):68-76. PubMed ID: 28982013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass.
    Wang Y; Radosevich M; Hayes D; Labbé N
    Biotechnol Bioeng; 2011 May; 108(5):1042-8. PubMed ID: 21191999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment.
    McIntosh S; Vancov T
    Bioresour Technol; 2010 Sep; 101(17):6718-27. PubMed ID: 20403691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic studies on a cellulase system of Trichoderma viride. II. Purification and Properties of two cellulases.
    Okada G
    J Biochem; 1975 Jan; 77(1?):33-42. PubMed ID: 237002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(2):398-406. PubMed ID: 17378581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes.
    Medve J; Karlsson J; Lee D; Tjerneld F
    Biotechnol Bioeng; 1998 Sep; 59(5):621-34. PubMed ID: 10099380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates.
    Martins LF; Kolling D; Camassola M; Dillon AJ; Ramos LP
    Bioresour Technol; 2008 Mar; 99(5):1417-24. PubMed ID: 17408952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6.
    Sivaswamy V; Boyanov MI; Peyton BM; Viamajala S; Gerlach R; Apel WA; Sani RK; Dohnalkova A; Kemner KM; Borch T
    Biotechnol Bioeng; 2011 Feb; 108(2):264-76. PubMed ID: 20872821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanism-based ICAT strategy for comparing relative expression and activity levels of glycosidases in biological systems.
    Hekmat O; He S; Warren RA; Withers SG
    J Proteome Res; 2008 Aug; 7(8):3282-92. PubMed ID: 18563928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases.
    Hall M; Bansal P; Lee JH; Realff MJ; Bommarius AS
    Bioresour Technol; 2011 Feb; 102(3):2910-5. PubMed ID: 21111611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates.
    Sani RK; Peyton BM; Smith WA; Apel WA; Petersen JN
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):192-9. PubMed ID: 12382063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases.
    Geddes CC; Peterson JJ; Roslander C; Zacchi G; Mullinnix MT; Shanmugam KT; Ingram LO
    Bioresour Technol; 2010 Mar; 101(6):1851-7. PubMed ID: 19880314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal processing and enzymatic hydrolysis of sorghum bagasse for fermentable carbohydrates production.
    Dogaris I; Karapati S; Mamma D; Kalogeris E; Kekos D
    Bioresour Technol; 2009 Dec; 100(24):6543-9. PubMed ID: 19692234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterisation of endo-beta-1,4-glucanase and laminarinase enzymes from the gecarcinid land crab Gecarcoidea natalis and the aquatic crayfish Cherax destructor.
    Allardyce BJ; Linton SM
    J Exp Biol; 2008 Jul; 211(Pt 14):2275-87. PubMed ID: 18587122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of rhamnolipid on the cellulase and xylanase in hydrolysis of wheat straw.
    Wang HY; Fan BQ; Li CH; Liu S; Li M
    Bioresour Technol; 2011 Jun; 102(11):6515-21. PubMed ID: 21478013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.