These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2153584)

  • 21. Efficient synthesis of fluorothiosparfosic acid analogues with potential antitumoral activity.
    Pfund E; Lequeux T; Masson S; Vazeux M; Cordi A; Pierre A; Serre V; Hervé G
    Bioorg Med Chem; 2005 Aug; 13(16):4921-8. PubMed ID: 15975800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The allosteric activator ATP induces a substrate-dependent alteration of the quaternary structure of a mutant aspartate transcarbamoylase impaired in active site closure.
    Baker DP; Fetler L; Vachette P; Kantrowitz ER
    Protein Sci; 1996 Nov; 5(11):2276-86. PubMed ID: 8931146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of an active site histidine in the catalytic mechanism of aspartate transcarbamoylase.
    Kleanthous C; Wemmer DE; Schachman HK
    J Biol Chem; 1988 Sep; 263(26):13062-7. PubMed ID: 3047117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral alterations associated with the ligand-promoted gross conformational change in aspartate transcarbamoylase.
    Hu CY; Howlett GJ; Schachman HK
    J Biol Chem; 1981 May; 256(10):4998-5004. PubMed ID: 7014567
    [No Abstract]   [Full Text] [Related]  

  • 25. Function of threonine-55 in the carbamoyl phosphate binding site of Escherichia coli aspartate transcarbamoylase.
    Xu W; Kantrowitz ER
    Biochemistry; 1989 Dec; 28(26):9937-43. PubMed ID: 2515892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Propagation of conformational changes in Ni(II)-substituted aspartate transcarbamoylase: effect of active-site ligands on the regulatory chains.
    Johnson RS; Schachman HK
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1995-9. PubMed ID: 6990418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calorimetric estimate of the enthalpy change for the substrate-promoted conformational transition of aspartate transcarbamoylase from Escherichia coli.
    Shrake A; Ginsburg A; Schachman HK
    J Biol Chem; 1981 May; 256(10):5005-15. PubMed ID: 7014568
    [No Abstract]   [Full Text] [Related]  

  • 28. In situ properties of Helicobacter pylori aspartate carbamoyltransferase.
    Burns BP; Mendz GL; Hazell SL
    Arch Biochem Biophys; 1997 Nov; 347(1):119-25. PubMed ID: 9344472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and biological activity of a series of aspartate transcarbamoylase inhibitors: N-substituted diethyl aspartates and N-substituted-3-oxo-1,4-piperazine-2-acetic acid esters.
    Dutta PL; Foye WO
    J Pharm Sci; 1990 May; 79(5):447-52. PubMed ID: 2352167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition.
    Heng S; Stieglitz KA; Eldo J; Xia J; Cardia JP; Kantrowitz ER
    Biochemistry; 2006 Aug; 45(33):10062-71. PubMed ID: 16906764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase.
    Wales ME; Madison LL; Glaser SS; Wild JR
    J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Importance of residues Arg-167 and Gln-231 in both the allosteric and catalytic mechanisms of Escherichia coli aspartate transcarbamoylase.
    Stebbins JW; Zhang Y; Kantrowitz ER
    Biochemistry; 1990 Apr; 29(16):3821-7. PubMed ID: 2191720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligand-promoted strengthening of interchain bonding domains in catalytic subunits of aspartate transcarbamoylase.
    Burns DL; Schachman HK
    J Biol Chem; 1982 Oct; 257(20):12214-8. PubMed ID: 7118940
    [No Abstract]   [Full Text] [Related]  

  • 34. Glu-50 in the catalytic chain of Escherichia coli aspartate transcarbamoylase plays a crucial role in the stability of the R quaternary structure.
    Tauc P; Keiser RT; Kantrowitz ER; Vachette P
    Protein Sci; 1994 Nov; 3(11):1998-2004. PubMed ID: 7703847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 19F nuclear magnetic resonance studies of fluorotyrosine-labeled aspartate transcarbamoylase. Properties of the enzyme and its catalytic and regulatory subunits.
    Wacks DB; Schachman HK
    J Biol Chem; 1985 Sep; 260(21):11651-8. PubMed ID: 4044574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and use of potent, specific enzyme inhibitors.
    Stark GR; Bartlett PA
    Pharmacol Ther; 1983; 23(1):45-78. PubMed ID: 6361807
    [No Abstract]   [Full Text] [Related]  

  • 37. Enzymatic assay for the antitumor agent-N-(phosphonacetyl)-L-aspartic acid (PALA).
    Friedman J; Moore EC; Hall SW; Loo TL
    Cancer Treat Rep; 1979 Jan; 63(1):85-8. PubMed ID: 421235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calorimetric analysis of aspartate transcarbamylase from Escherichia coli. Binding of substrates and substrate analogues to the native enzyme and catalytic subunit.
    Knier BL; Allewell NM
    Biochemistry; 1978 Mar; 17(5):784-90. PubMed ID: 343809
    [No Abstract]   [Full Text] [Related]  

  • 39. 13C isotope effect studies of Escherichia coli aspartate transcarbamylase in the presence of the bisubstrate analog N-(phosphonoacetyl)-L-aspartate.
    Parmentier LE; O'Leary MH; Schachman HK; Cleland WW
    Biochemistry; 1992 Jul; 31(28):6598-602. PubMed ID: 1633172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The 80s loop of the catalytic chain of Escherichia coli aspartate transcarbamoylase is critical for catalysis and homotropic cooperativity.
    Macol C; Dutta M; Stec B; Tsuruta H; Kantrowitz ER
    Protein Sci; 1999 Jun; 8(6):1305-13. PubMed ID: 10386880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.