BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21535897)

  • 1. Direct interaction of FliX and FlbD is required for their regulatory activity in Caulobacter crescentus.
    Xu Z; Dutton RJ; Gober JW
    BMC Microbiol; 2011 May; 11():89. PubMed ID: 21535897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking structural assembly to gene expression: a novel mechanism for regulating the activity of a sigma54 transcription factor.
    Dutton RJ; Xu Z; Gober JW
    Mol Microbiol; 2005 Nov; 58(3):743-57. PubMed ID: 16238624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of FlbD activity by flagellum assembly is accomplished through direct interaction with the trans-acting factor, FliX.
    Muir RE; Gober JW
    Mol Microbiol; 2004 Nov; 54(3):715-30. PubMed ID: 15491362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Caulobacter crescentus flagellar gene, fliX, encodes a novel trans-acting factor that couples flagellar assembly to transcription.
    Muir RE; O'Brien TM; Gober JW
    Mol Microbiol; 2001 Mar; 39(6):1623-37. PubMed ID: 11260478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus.
    Muir RE; Gober JW
    Mol Microbiol; 2002 Feb; 43(3):597-615. PubMed ID: 11929518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The trans-acting flagellar regulatory proteins, FliX and FlbD, play a central role in linking flagellar biogenesis and cytokinesis in Caulobacter crescentus.
    Muir RE; Easter J; Gober JW
    Microbiology (Reading); 2005 Nov; 151(Pt 11):3699-3711. PubMed ID: 16272391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus.
    Muir RE; Gober JW
    Mol Microbiol; 2001 Jul; 41(1):117-30. PubMed ID: 11454205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global regulation of a sigma 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD.
    Wu J; Benson AK; Newton A
    J Bacteriol; 1995 Jun; 177(11):3241-50. PubMed ID: 7768824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FlbD has a DNA-binding activity near its carboxy terminus that recognizes ftr sequences involved in positive and negative regulation of flagellar gene transcription in Caulobacter crescentus.
    Mullin DA; Van Way SM; Blankenship CA; Mullin AH
    J Bacteriol; 1994 Oct; 176(19):5971-81. PubMed ID: 7928958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A membrane-associated protein, FliX, is required for an early step in Caulobacter flagellar assembly.
    Mohr CD; MacKichan JK; Shapiro L
    J Bacteriol; 1998 Apr; 180(8):2175-85. PubMed ID: 9555902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing flagellar promoter occupancy in wild-type and mutant Caulobacter crescentus by chromatin immunoprecipitation.
    Davis NJ; Viollier PH
    FEMS Microbiol Lett; 2011 Jun; 319(2):146-52. PubMed ID: 21457294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes.
    Ramakrishnan G; Zhao JL; Newton A
    J Bacteriol; 1994 Dec; 176(24):7587-600. PubMed ID: 8002583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of FlbD in regulation of flagellar gene transcription in Caulobacter crescentus.
    Benson AK; Wu J; Newton A
    Res Microbiol; 1994; 145(5-6):420-30. PubMed ID: 7855428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A gene coding for a putative sigma 54 activator is developmentally regulated in Caulobacter crescentus.
    Marques MV; Gomes SL; Gober JW
    J Bacteriol; 1997 Sep; 179(17):5502-10. PubMed ID: 9287006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sigma 54 transcriptional activator also functions as a pole-specific repressor in Caulobacter.
    Wingrove JA; Gober JW
    Genes Dev; 1994 Aug; 8(15):1839-52. PubMed ID: 7958861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An organelle-tethering mechanism couples flagellation to cell division in bacteria.
    Siwach M; Kumar L; Palani S; Muraleedharan S; Panis G; Fumeaux C; Mony BM; Sanyal S; Viollier PH; Radhakrishnan SK
    Dev Cell; 2021 Mar; 56(5):657-670.e4. PubMed ID: 33600766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Caulobacter crescentus FlbD protein acts at ftr sequence elements both to activate and to repress transcription of cell cycle-regulated flagellar genes.
    Benson AK; Ramakrishnan G; Ohta N; Feng J; Ninfa AJ; Newton A
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4989-93. PubMed ID: 8197169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and temporal phosphorylation of a transcriptional activator regulates pole-specific gene expression in Caulobacter.
    Wingrove JA; Mangan EK; Gober JW
    Genes Dev; 1993 Oct; 7(10):1979-92. PubMed ID: 8406002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Control of Flagellar Synthesis and Exopolysaccharide Production by FlbD-FliX Class II Regulatory Proteins in Bradyrhizobium diazoefficiens.
    Dardis C; Quelas JI; Mengucci F; Althabegoiti MJ; Lodeiro AR; Mongiardini EJ
    J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33468586
    [No Abstract]   [Full Text] [Related]  

  • 20. Temporal regulation of genes encoding the flagellar proximal rod in Caulobacter crescentus.
    Boyd CH; Gober JW
    J Bacteriol; 2001 Jan; 183(2):725-35. PubMed ID: 11133968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.