BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2689 related articles for article (PubMed ID: 21535989)

  • 21. Bone scan images reveal increased osteoblastic function after bortezomib treatment in patients with multiple myeloma.
    Lee SE; Min CK; Yahng SA; Cho BS; Eom KS; Kim YJ; Kim HJ; Lee S; Cho SG; Kim DW; Lee JW; Min WS; Park CW
    Eur J Haematol; 2011 Jan; 86(1):83-6. PubMed ID: 20946110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity.
    Martin TJ; Ng KW
    J Cell Biochem; 1994 Nov; 56(3):357-66. PubMed ID: 7876329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parathyroid hormone temporal effects on bone formation and resorption.
    Kroll MH
    Bull Math Biol; 2000 Jan; 62(1):163-88. PubMed ID: 10824426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Mechanisms for formation of myeloma bone disease].
    Yata K; Abe M; Matsumoto T
    Clin Calcium; 2008 Apr; 18(4):438-46. PubMed ID: 18379024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protection against cartilage and bone destruction by systemic interleukin-4 treatment in established murine type II collagen-induced arthritis.
    Joosten LA; Lubberts E; Helsen MM; Saxne T; Coenen-de Roo CJ; Heinegård D; van den Berg WB
    Arthritis Res; 1999; 1(1):81-91. PubMed ID: 11056663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cellular actions of interleukin-11 on bone resorption in vitro.
    Hill PA; Tumber A; Papaioannou S; Meikle MC
    Endocrinology; 1998 Apr; 139(4):1564-72. PubMed ID: 9528935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Update on the pathogenesis of osteolysis in multiple myeloma patients.
    Giuliani N; Colla S; Rizzoli V
    Acta Biomed; 2004 Dec; 75(3):143-52. PubMed ID: 15796087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteoblast function in myeloma.
    Roodman GD
    Bone; 2011 Jan; 48(1):135-40. PubMed ID: 20601285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the bone marrow microenvironment in multiple myeloma.
    Roodman GD
    J Bone Miner Res; 2002 Nov; 17(11):1921-5. PubMed ID: 12412796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New potential targets for treating myeloma bone disease.
    Roodman GD
    Clin Cancer Res; 2006 Oct; 12(20 Pt 2):6270s-6273s. PubMed ID: 17062712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel aspects of osteoclast activation and osteoblast inhibition in myeloma bone disease.
    Heider U; Hofbauer LC; Zavrski I; Kaiser M; Jakob C; Sezer O
    Biochem Biophys Res Commun; 2005 Dec; 338(2):687-93. PubMed ID: 16216218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulatory effect of insulin-like growth factor binding protein-5 on mouse osteoclast formation and osteoclastic bone-resorbing activity.
    Kanatani M; Sugimoto T; Nishiyama K; Chihara K
    J Bone Miner Res; 2000 May; 15(5):902-10. PubMed ID: 10804020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery, Development, and clinical applications of bortezomib.
    Jung L; Holle L; Dalton WS
    Oncology (Williston Park); 2004 Dec; 18(14 Suppl 11):4-13. PubMed ID: 15688597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma.
    Heath DJ; Vanderkerken K; Cheng X; Gallagher O; Prideaux M; Murali R; Croucher PI
    Cancer Res; 2007 Jan; 67(1):202-8. PubMed ID: 17210700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myeloma bone disease: pathogenesis, current treatments and future targets.
    Walker RE; Lawson MA; Buckle CH; Snowden JA; Chantry AD
    Br Med Bull; 2014 Sep; 111(1):117-38. PubMed ID: 25190762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma.
    Qiang YW; Barlogie B; Rudikoff S; Shaughnessy JD
    Bone; 2008 Apr; 42(4):669-80. PubMed ID: 18294945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dickkopf-1: a suitable target for the management of myeloma bone disease.
    Gavriatopoulou M; Dimopoulos MA; Christoulas D; Migkou M; Iakovaki M; Gkotzamanidou M; Terpos E
    Expert Opin Ther Targets; 2009 Jul; 13(7):839-48. PubMed ID: 19530987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bortezomib: a valuable new antineoplastic strategy in multiple myeloma.
    Bladé J; Cibeira MT; Rosiñol L
    Acta Oncol; 2005; 44(5):440-8. PubMed ID: 16118077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphology and biochemistry of bone remodeling: possible control by vitamin D, parathyroid hormone, and other substances.
    Huffer WE
    Lab Invest; 1988 Oct; 59(4):418-42. PubMed ID: 3050272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathogenesis of myeloma bone disease.
    Roodman GD
    Leukemia; 2009 Mar; 23(3):435-41. PubMed ID: 19039321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 135.