BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21536014)

  • 21. Mechanism of FGF receptor dimerization and activation.
    Sarabipour S; Hristova K
    Nat Commun; 2016 Jan; 7():10262. PubMed ID: 26725515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The extracellular domain of fibroblast growth factor receptor 3 inhibits ligand-independent dimerization.
    Chen L; Placone J; Novicky L; Hristova K
    Sci Signal; 2010 Nov; 3(150):ra86. PubMed ID: 21119106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The physical basis of FGFR3 response to fgf1 and fgf2.
    Chen F; Hristova K
    Biochemistry; 2011 Oct; 50(40):8576-82. PubMed ID: 21894939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The strong dimerization of the transmembrane domain of the fibroblast growth factor receptor (FGFR) is modulated by C-terminal juxtamembrane residues.
    Peng WC; Lin X; Torres J
    Protein Sci; 2009 Feb; 18(2):450-9. PubMed ID: 19165726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of FGFR3 signaling at the cell membrane via total internal reflection fluorescence microscopy to compare the activation of FGFR3 mutants.
    Hartl I; Brumovska V; Striedner Y; Yasari A; Schütz GJ; Sevcsik E; Tiemann-Boege I
    J Biol Chem; 2023 Feb; 299(2):102832. PubMed ID: 36581204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical basis behind achondroplasia, the most common form of human dwarfism.
    He L; Horton W; Hristova K
    J Biol Chem; 2010 Sep; 285(39):30103-14. PubMed ID: 20624921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
    Mineev KS; Lesovoy DM; Usmanova DR; Goncharuk SA; Shulepko MA; Lyukmanova EN; Kirpichnikov MP; Bocharov EV; Arseniev AS
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):164-72. PubMed ID: 24036227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Death Receptor 5 Activation Is Energetically Coupled to Opening of the Transmembrane Domain Dimer.
    Vunnam N; Campbell-Bezat CK; Lewis AK; Sachs JN
    Biophys J; 2017 Jul; 113(2):381-392. PubMed ID: 28746849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.
    Bocharov EV; Lesovoy DM; Goncharuk SA; Goncharuk MV; Hristova K; Arseniev AS
    Structure; 2013 Nov; 21(11):2087-93. PubMed ID: 24120763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The transmembrane mutation G380R in fibroblast growth factor receptor 3 uncouples ligand-mediated receptor activation from down-regulation.
    Monsonego-Ornan E; Adar R; Feferman T; Segev O; Yayon A
    Mol Cell Biol; 2000 Jan; 20(2):516-22. PubMed ID: 10611230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia.
    Webster MK; Donoghue DJ
    EMBO J; 1996 Feb; 15(3):520-7. PubMed ID: 8599935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of the effects of mutations on receptor tyrosine kinase (RTK) activation in mammalian cells.
    He L; Hristova K
    Methods Mol Biol; 2015; 1233():81-7. PubMed ID: 25319891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chimeras of the native form or achondroplasia mutant (G375C) of human fibroblast growth factor receptor 3 induce ligand-dependent differentiation of PC12 cells.
    Thompson LM; Raffioni S; Wasmuth JJ; Bradshaw RA
    Mol Cell Biol; 1997 Jul; 17(7):4169-77. PubMed ID: 9199352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Profound ligand-independent kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II.
    Webster MK; D'Avis PY; Robertson SC; Donoghue DJ
    Mol Cell Biol; 1996 Aug; 16(8):4081-7. PubMed ID: 8754806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transient dimerization and interaction with ERGIC-53 occur in the fibroblast growth factor receptor 3 early secretory pathway.
    Lievens PM; De Servi B; Garofalo S; Lunstrum GP; Horton WA; Liboi E
    Int J Biochem Cell Biol; 2008; 40(11):2649-59. PubMed ID: 18577465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of the N-Terminal Transmembrane Helix Contacts in the Activation of FGFR3.
    Matsuoka D; Kamiya M; Sato T; Sugita Y
    J Comput Chem; 2020 Mar; 41(6):561-572. PubMed ID: 31804721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oncogenic Gene Fusion FGFR3-TACC3 Is Regulated by Tyrosine Phosphorylation.
    Nelson KN; Meyer AN; Siari A; Campos AR; Motamedchaboki K; Donoghue DJ
    Mol Cancer Res; 2016 May; 14(5):458-69. PubMed ID: 26869289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transmembrane helix heterodimerization in lipid bilayers: probing the energetics behind autosomal dominant growth disorders.
    Merzlyakov M; You M; Li E; Hristova K
    J Mol Biol; 2006 Apr; 358(1):1-7. PubMed ID: 16500676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential activation of cysteine-substitution mutants of fibroblast growth factor receptor 3 is determined by cysteine localization.
    Adar R; Monsonego-Ornan E; David P; Yayon A
    J Bone Miner Res; 2002 May; 17(5):860-8. PubMed ID: 12009017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The achondroplasia mutation does not alter the dimerization energetics of the fibroblast growth factor receptor 3 transmembrane domain.
    You M; Li E; Hristova K
    Biochemistry; 2006 May; 45(17):5551-6. PubMed ID: 16634636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.