These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 2153606)
1. Influence of long-term treatment with the Ca2(+)-antagonists nifedipine, verapamil, flunarizine and with the calmodulin antagonist trifluoperazine on beta-adrenoceptors in rat cerebral cortex. Staneva-Stoytcheva D; Popova J; Mutafova-Yambolieva V; Alov P Gen Pharmacol; 1990; 21(1):149-52. PubMed ID: 2153606 [TBL] [Abstract][Full Text] [Related]
2. Effects of the Ca2(+)-antagonists nifedipine, verapamil, flunarizine and of the calmodulin antagonist trifluoperazine on muscarinic cholinergic receptors in rat cerebral cortex. Popova J; Staneva-Stoytcheva D; Mutafova V Gen Pharmacol; 1990; 21(3):317-9. PubMed ID: 2341018 [TBL] [Abstract][Full Text] [Related]
3. Long-term treatment with different calcium- and calmodulin-antagonists induces changes in rat brain alpha-adrenoceptors. Staneva-Stoytcheva D; Dantchev N; Popov P Gen Pharmacol; 1992 Jan; 23(1):61-3. PubMed ID: 1317312 [TBL] [Abstract][Full Text] [Related]
4. Changes in benzodiazepine receptors of rat brain after long-term treatment with the Ca(2+)-antagonists nifedipine, verapamil, flunarizine and with the calmodulin antagonist trifluoperazine. Staneva-Stoytcheva D; Danchev N; Popov P Gen Pharmacol; 1991; 22(6):1151-4. PubMed ID: 1667304 [TBL] [Abstract][Full Text] [Related]
5. The long-term treatment with the Ca(2+)-antagonists nifedipine, verapamil, flunarizine and with the calmodulin antagonist trifluoperazine decreases the activity of 5-HT1 receptors in rat cerebral cortex and hippocampus. Popova J; Staneva-Stoytcheva D; Ivanova E; Tosheva T Gen Pharmacol; 1991; 22(6):1147-9. PubMed ID: 1810811 [TBL] [Abstract][Full Text] [Related]
6. Calcium channel blockers inhibit the (Ca2+ + Mg2+)-ATPase activity and the 125I-calmodulin binding in brain membranes. Santos DL; Lopes MC; Carvalho CM Eur J Pharmacol; 1994 May; 267(3):307-16. PubMed ID: 8088369 [TBL] [Abstract][Full Text] [Related]
7. Studies of [3H]nitrendipine binding and KCl-induced calcium uptake in rat cortical synaptosomes. Wei JW; Chiang DH Gen Pharmacol; 1985; 16(3):211-6. PubMed ID: 3160632 [TBL] [Abstract][Full Text] [Related]
8. Effect of nifedipine, verapamil, diltiazem and trifluoperazine on acetaminophen toxicity in mice. Dimova S; Koleva M; Rangelova D; Stoythchev T Arch Toxicol; 1995; 70(2):112-8. PubMed ID: 8773183 [TBL] [Abstract][Full Text] [Related]
9. Direct activation of Ca2+ channels by palmitoyl carnitine, a putative endogenous ligand. Spedding M; Mir AK Br J Pharmacol; 1987 Oct; 92(2):457-68. PubMed ID: 2445406 [TBL] [Abstract][Full Text] [Related]
10. Effects of calcium antagonists on KCl-evoked calcium uptake by rat cortical synaptosomes. Wei JW; Chiang DH Gen Pharmacol; 1986; 17(3):261-5. PubMed ID: 3721183 [TBL] [Abstract][Full Text] [Related]
11. Effects of Ca2+ channel blockers on Ca2+ translocation across synaptosomal membranes. Carvalho CA; Coutinho OP; Carvalho AP J Neurochem; 1986 Dec; 47(6):1774-84. PubMed ID: 2430061 [TBL] [Abstract][Full Text] [Related]
12. An approach to analysis of radiolabeled ligand interactions with specific receptors. Manukhin BN; Nesterova LA; Smurova EA; Kichikulova TP Eur J Pharmacol; 1999 Dec; 386(2-3):279-88. PubMed ID: 10618480 [TBL] [Abstract][Full Text] [Related]
13. Effects of nifedipine, verapamil, diltiazem and trifluoperazine on the antinociceptive activity of acetaminophen. Koleva M; Dimova S Methods Find Exp Clin Pharmacol; 2000 Dec; 22(10):741-5. PubMed ID: 11346895 [TBL] [Abstract][Full Text] [Related]
14. Interaction of verapamil and other calcium channel blockers with alpha 1- and alpha 2-adrenergic receptors. Motulsky HJ; Snavely MD; Hughes RJ; Insel PA Circ Res; 1983 Feb; 52(2):226-31. PubMed ID: 6297831 [TBL] [Abstract][Full Text] [Related]
15. Verapamil competitively inhibits alpha 1-adrenergic and muscarinic but not beta-adrenergic receptors in rat myocardium. Karliner JS; Motulsky HJ; Dunlap J; Brown JH; Insel PA J Cardiovasc Pharmacol; 1982; 4(3):515-20. PubMed ID: 6177951 [TBL] [Abstract][Full Text] [Related]
16. Effects of L-type calcium channel antagonists on the serotonin-depleting actions of MDMA in rats. Finnegan KT; Calder L; Clikeman J; Wei S; Karler R Brain Res; 1993 Feb; 603(1):134-8. PubMed ID: 8095837 [TBL] [Abstract][Full Text] [Related]
17. Influence of calmodulin antagonists and calcium channel blockers on triiodothyronine uptake by rat hepatoma and myoblast cell lines. Topliss DJ; Scholz GH; Kolliniatis E; Barlow JW; Stockigt JR Metabolism; 1993 Mar; 42(3):376-80. PubMed ID: 8487658 [TBL] [Abstract][Full Text] [Related]
18. Phenylethanolaminotetralines compete with [3H]dihydroalprenolol binding to rat colon membranes without evidencing atypical beta-adrenergic sites. Landi M; Bianchetti A; Croci T; Manara L Biochem Pharmacol; 1992 Aug; 44(4):665-72. PubMed ID: 1354964 [TBL] [Abstract][Full Text] [Related]
19. Stage-dependent inhibition of Plasmodium falciparum by potent Ca2+ and calmodulin modulators. Tanabe K; Izumo A; Kato M; Miki A; Doi S J Protozool; 1989; 36(2):139-43. PubMed ID: 2657032 [TBL] [Abstract][Full Text] [Related]
20. gamma-Aminobutyric acid release from synaptosomes as influenced by Ca2+ and Ca2+ channel blockers. Carvalho CM; Santos SV; Carvalho AP Eur J Pharmacol; 1986 Nov; 131(1):1-12. PubMed ID: 3816939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]