These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 21536100)

  • 21. In vitro translation and analysis of early events in protein synthesis initiation in nonreticulocyte Mammalian cells.
    Pollard JW; Clemens MJ
    Methods Mol Biol; 1988; 4():47-60. PubMed ID: 21424625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro translation.
    Jagus R; Joshi B; Miyamoto S; Beckler GS
    Curr Protoc Cell Biol; 2001 May; Chapter 11():Unit 11.2. PubMed ID: 18228307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance benchmarking of four cell-free protein expression systems.
    Gagoski D; Polinkovsky ME; Mureev S; Kunert A; Johnston W; Gambin Y; Alexandrov K
    Biotechnol Bioeng; 2016 Feb; 113(2):292-300. PubMed ID: 26301602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rolling Circle Translation of Circular RNA in Living Human Cells.
    Abe N; Matsumoto K; Nishihara M; Nakano Y; Shibata A; Maruyama H; Shuto S; Matsuda A; Yoshida M; Ito Y; Abe H
    Sci Rep; 2015 Nov; 5():16435. PubMed ID: 26553571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications.
    Chong S
    Curr Protoc Mol Biol; 2014 Oct; 108():16.30.1-16.30.11. PubMed ID: 25271714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of human translation-competent lysates using dual centrifugation.
    Gurzeler LA; Ziegelmüller J; Mühlemann O; Karousis ED
    RNA Biol; 2022 Jan; 19(1):78-88. PubMed ID: 34965175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Many cytoskeletal proteins associate with the hela cytoskeleton during translation in vitro.
    Fulton AB; Wan KM
    Cell; 1983 Feb; 32(2):619-25. PubMed ID: 6681737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of high-yield autofluorescent protein microarrays using hybrid cell-free expression with combined Escherichia coli S30 and wheat germ extracts.
    Zárate X; Henderson DC; Phillips KC; Lake AD; Galbraith DW
    Proteome Sci; 2010 Jun; 8():32. PubMed ID: 20546627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of heparin contained in preparations of small cytoplasmic RNAs on cell-free translation.
    Johansson HE; De Groot N; Hochberg AA; Hentze MW
    J Biol Chem; 1991 Jan; 266(3):1921-5. PubMed ID: 1703159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ribosomal RNA supplementation highly reinforced cell-free translation activity of wheat germ.
    Shen XC; Yao S; Fukano H; Kitayama A; Nagamune T; Suzuki E
    J Biosci Bioeng; 2000; 89(1):68-72. PubMed ID: 16232700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unexpected instabilities explain batch-to-batch variability in cell-free protein expression systems.
    Hunter DJB; Bhumkar A; Giles N; Sierecki E; Gambin Y
    Biotechnol Bioeng; 2018 Aug; 115(8):1904-1914. PubMed ID: 29603735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robust microarray production of freshly expressed proteins in a human milieu.
    Festa F; Rollins SM; Vattem K; Hathaway M; Lorenz P; Mendoza EA; Yu X; Qiu J; Kilmer G; Jensen P; Webb B; Ryan ET; LaBaer J
    Proteomics Clin Appl; 2013 Jun; 7(5-6):372-7. PubMed ID: 23027544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the in vitro translation products of mRNA isolated from suspension cultures of Phaseolus vulgaris grown on maintenance and induction medium.
    Dudley K; Northcote DH
    Planta; 1978 Jan; 138(1):41-8. PubMed ID: 24413939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coordinated control of splicing and translation.
    Graveley BR
    Nat Struct Mol Biol; 2005 Dec; 12(12):1022-3. PubMed ID: 16327769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant-Derived Cell-Free Biofactories for the Production of Secondary Metabolites.
    Buntru M; Hahnengress N; Croon A; Schillberg S
    Front Plant Sci; 2021; 12():794999. PubMed ID: 35154185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Erratum to: Functional Analysis of Membrane Proteins Produced by Cell-Free Translation.
    Kastenschmidt JM; Avetyan I; Villalta SA
    Methods Mol Biol; 2018; 1687():E1. PubMed ID: 29427267
    [No Abstract]   [Full Text] [Related]  

  • 37. Erratum to: Functional Analysis of Membrane Proteins Produced by Cell-Free Translation.
    Dondapati SK; Wüstenhagen DA; Kubick S
    Methods Mol Biol; 2018; 1685():E1. PubMed ID: 29349681
    [No Abstract]   [Full Text] [Related]  

  • 38. ErbB2 dephosphorylation and anti-proliferative effects of neuregulin-1 in ErbB2-overexpressing cells; re-evaluation of their low-affinity interaction.
    Wang R; Iwakura Y; Araki K; Keino-Masu K; Masu M; Wang XY; Takei N; Higashiyama S; Nawa H
    Sci Rep; 2013; 3():1402. PubMed ID: 23466678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro production of an active neurotrophic factor, neuregulin-1: qualitative comparison of different cell-free translation systems.
    Wang R; Iwakura Y; Araki K; Sotoyama H; Takei N; Nawa H
    Neurosci Lett; 2011 Jun; 497(2):90-3. PubMed ID: 21536100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Translational activity of mouse protamine 1 messenger ribonucleoprotein particles in the reticulocyte and wheat germ cell-free translation systems.
    Kleene KC; Smith J
    Mol Reprod Dev; 1994 Jan; 37(1):12-20. PubMed ID: 7907489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.