These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 21536106)

  • 1. Regulation of cardiovascular cellular processes by S-nitrosylation.
    Schulman IH; Hare JM
    Biochim Biophys Acta; 2012 Jun; 1820(6):752-62. PubMed ID: 21536106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide signalling in cardiovascular health and disease.
    Farah C; Michel LYM; Balligand JL
    Nat Rev Cardiol; 2018 May; 15(5):292-316. PubMed ID: 29388567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide, S-nitrosylation and neurodegeneration.
    Chung KK; Dawson TM; Dawson VL
    Cell Mol Biol (Noisy-le-grand); 2005 Sep; 51(3):247-54. PubMed ID: 16191392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide synthases, S-nitrosylation and cardiovascular health: from molecular mechanisms to therapeutic opportunities (review).
    Treuer AV; Gonzalez DR
    Mol Med Rep; 2015 Mar; 11(3):1555-65. PubMed ID: 25405382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor.
    Beuve A
    Antioxid Redox Signal; 2017 Jan; 26(3):137-149. PubMed ID: 26906466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of mitochondrial processes by protein S-nitrosylation.
    Piantadosi CA
    Biochim Biophys Acta; 2012 Jun; 1820(6):712-21. PubMed ID: 21397666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of thioredoxin in the regulation of cellular processes by S-nitrosylation.
    Sengupta R; Holmgren A
    Biochim Biophys Acta; 2012 Jun; 1820(6):689-700. PubMed ID: 21878369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide signaling in the cardiovascular system: implications for heart failure.
    Saraiva RM; Hare JM
    Curr Opin Cardiol; 2006 May; 21(3):221-8. PubMed ID: 16601461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular S-denitrosylases: Potential role and interplay of Thioredoxin, TRP14, and Glutaredoxin systems in thiol-dependent protein denitrosylation.
    Chatterji A; Sengupta R
    Int J Biochem Cell Biol; 2021 Feb; 131():105904. PubMed ID: 33359085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the Nitric Oxide Synthase Interactomes and S-Nitroso-Proteomes: Furthering the Case for Enzymatic S-Nitrosylation.
    Seth D; Stomberski CT; McLaughlin PJ; Premont RT; Lundberg K; Stamler JS
    Antioxid Redox Signal; 2023 Oct; 39(10-12):621-634. PubMed ID: 37053107
    [No Abstract]   [Full Text] [Related]  

  • 11. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system.
    Maron BA; Tang SS; Loscalzo J
    Antioxid Redox Signal; 2013 Jan; 18(3):270-87. PubMed ID: 22770551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications.
    Nediani C; Raimondi L; Borchi E; Cerbai E
    Antioxid Redox Signal; 2011 Jan; 14(2):289-331. PubMed ID: 20624031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling.
    Stomberski CT; Hess DT; Stamler JS
    Antioxid Redox Signal; 2019 Apr; 30(10):1331-1351. PubMed ID: 29130312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation.
    Tejero J; Shiva S; Gladwin MT
    Physiol Rev; 2019 Jan; 99(1):311-379. PubMed ID: 30379623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free radicals and antioxidants in normal physiological functions and human disease.
    Valko M; Leibfritz D; Moncol J; Cronin MT; Mazur M; Telser J
    Int J Biochem Cell Biol; 2007; 39(1):44-84. PubMed ID: 16978905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric Oxide Synthase 1 Modulates Basal and β-Adrenergic-Stimulated Contractility by Rapid and Reversible Redox-Dependent S-Nitrosylation of the Heart.
    Vielma AZ; León L; Fernández IC; González DR; Boric MP
    PLoS One; 2016; 11(8):e0160813. PubMed ID: 27529477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrosothiol formation and S-nitrosation signaling through nitric oxide synthases.
    Wynia-Smith SL; Smith BC
    Nitric Oxide; 2017 Feb; 63():52-60. PubMed ID: 27720836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide and cardiobiology-methods for intact hearts and isolated myocytes.
    Hare JM; Beigi F; Tziomalos K
    Methods Enzymol; 2008; 441():369-92. PubMed ID: 18554546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide in blood. The nitrosative-oxidative disequilibrium hypothesis on the pathogenesis of cardiovascular disease.
    Elahi MM; Naseem KM; Matata BM
    FEBS J; 2007 Feb; 274(4):906-23. PubMed ID: 17244198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-Nitrosylation signaling regulates cellular protein interactions.
    Marozkina NV; Gaston B
    Biochim Biophys Acta; 2012 Jun; 1820(6):722-9. PubMed ID: 21745537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.