These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 21536567)
1. New variational principles for locating periodic orbits of differential equations. Boghosian BM; Fazendeiro LM; Lätt J; Tang H; Coveney PV Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2211-8. PubMed ID: 21536567 [TBL] [Abstract][Full Text] [Related]
2. Unstable periodic orbits in the Lorenz attractor. Boghosian BM; Brown A; Lätt J; Tang H; Fazendeiro LM; Coveney PV Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2345-53. PubMed ID: 21536582 [TBL] [Abstract][Full Text] [Related]
3. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related]
4. On the use of stabilizing transformations for detecting unstable periodic orbits in high-dimensional flows. Crofts JJ; Davidchack RL Chaos; 2009 Sep; 19(3):033138. PubMed ID: 19792018 [TBL] [Abstract][Full Text] [Related]
5. Detecting unstable periodic orbits in chaotic continuous-time dynamical systems. Pingel D; Schmelcher P; Diakonos FK Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026214. PubMed ID: 11497684 [TBL] [Abstract][Full Text] [Related]
6. Variational method for finding periodic orbits in a general flow. Lan Y; Cvitanović P Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016217. PubMed ID: 14995703 [TBL] [Abstract][Full Text] [Related]
7. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems. Saiki Y; Yamada M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096 [TBL] [Abstract][Full Text] [Related]
8. Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method. Azimi S; Ashtari O; Schneider TM Phys Rev E; 2022 Jan; 105(1-1):014217. PubMed ID: 35193314 [TBL] [Abstract][Full Text] [Related]
10. Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model. Gritsun A Philos Trans A Math Phys Eng Sci; 2013 May; 371(1991):20120336. PubMed ID: 23588051 [TBL] [Abstract][Full Text] [Related]
11. Locating unstable periodic orbits: when adaptation integrates into delayed feedback control. Lin W; Ma H; Feng J; Chen G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046214. PubMed ID: 21230372 [TBL] [Abstract][Full Text] [Related]
12. Entropic lattice Boltzmann model for Burgers's equation. Boghosian BM; Love P; Yepez J Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1691-701. PubMed ID: 15306440 [TBL] [Abstract][Full Text] [Related]
13. Calculations of periodic orbits: The monodromy method and application to regularized systems. Simonovic NS Chaos; 1999 Dec; 9(4):854-864. PubMed ID: 12779881 [TBL] [Abstract][Full Text] [Related]
14. Effect of weak fluid inertia upon Jeffery orbits. Einarsson J; Candelier F; Lundell F; Angilella JR; Mehlig B Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):041002. PubMed ID: 25974430 [TBL] [Abstract][Full Text] [Related]
15. Basis for finding exact coherent states. Ahmed MA; Sharma AS Phys Rev E; 2020 Jan; 101(1-1):012213. PubMed ID: 32069595 [TBL] [Abstract][Full Text] [Related]
16. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations. He Y Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965 [TBL] [Abstract][Full Text] [Related]
17. Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio. Kataoka T; Tsutahara M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):035701. PubMed ID: 15089354 [TBL] [Abstract][Full Text] [Related]
18. Classification of periodic orbits in the four- and five-body problems. Broucke RA Ann N Y Acad Sci; 2004 May; 1017():408-21. PubMed ID: 15220159 [TBL] [Abstract][Full Text] [Related]
19. Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation. Costin O; Luo G; Tanveer S Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1876):2775-88. PubMed ID: 18487125 [TBL] [Abstract][Full Text] [Related]
20. Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties. Ma LY; Zhu ZN Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033202. PubMed ID: 25314554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]