These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 21536706)

  • 1. The stress of protein misfolding: from single cells to multicellular organisms.
    Gidalevitz T; Prahlad V; Morimoto RI
    Cold Spring Harb Perspect Biol; 2011 Jun; 3(6):. PubMed ID: 21536706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling.
    van Oosten-Hawle P; Morimoto RI
    Genes Dev; 2014 Jul; 28(14):1533-43. PubMed ID: 25030693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rethinking HSF1 in Stress, Development, and Organismal Health.
    Li J; Labbadia J; Morimoto RI
    Trends Cell Biol; 2017 Dec; 27(12):895-905. PubMed ID: 28890254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis.
    Lindquist SL; Kelly JW
    Cold Spring Harb Perspect Biol; 2011 Dec; 3(12):. PubMed ID: 21900404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses.
    van Oosten-Hawle P; Morimoto RI
    J Exp Biol; 2014 Jan; 217(Pt 1):129-36. PubMed ID: 24353212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of cell-non-autonomous proteostasis in metazoans.
    O'Brien D; van Oosten-Hawle P
    Essays Biochem; 2016 Oct; 60(2):133-142. PubMed ID: 27744329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases.
    Hekmatimoghaddam S; Zare-Khormizi MR; Pourrajab F
    Biofactors; 2017 Nov; 43(6):737-759. PubMed ID: 26899445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The shock of aging: molecular chaperones and the heat shock response in longevity and aging--a mini-review.
    Calderwood SK; Murshid A; Prince T
    Gerontology; 2009; 55(5):550-8. PubMed ID: 19546513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis.
    Dai C
    Philos Trans R Soc Lond B Biol Sci; 2018 Jan; 373(1738):. PubMed ID: 29203710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heat shock response: systems biology of proteotoxic stress in aging and disease.
    Morimoto RI
    Cold Spring Harb Symp Quant Biol; 2011; 76():91-9. PubMed ID: 22371371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organismal Protein Homeostasis Mechanisms.
    Hoppe T; Cohen E
    Genetics; 2020 Aug; 215(4):889-901. PubMed ID: 32759342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal reprograming of protein homeostasis by calcium-dependent regulation of the heat shock response.
    Silva MC; Amaral MD; Morimoto RI
    PLoS Genet; 2013 Aug; 9(8):e1003711. PubMed ID: 24009518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response.
    Lang BJ; Guerrero ME; Prince TL; Okusha Y; Bonorino C; Calderwood SK
    Arch Toxicol; 2021 Jun; 95(6):1943-1970. PubMed ID: 34003342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein homeostasis as a therapeutic target for diseases of protein conformation.
    Calamini B; Morimoto RI
    Curr Top Med Chem; 2012; 12(22):2623-40. PubMed ID: 23339312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging.
    Morimoto RI
    Genes Dev; 2008 Jun; 22(11):1427-38. PubMed ID: 18519635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-Nonautonomous Regulation of Proteostasis in Aging and Disease.
    Morimoto RI
    Cold Spring Harb Perspect Biol; 2020 Apr; 12(4):. PubMed ID: 30962274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress biology: Complexity and multifariousness in health and disease.
    Mayer MP; Blair L; Blatch GL; Borges TJ; Chadli A; Chiosis G; de Thonel A; Dinkova-Kostova A; Ecroyd H; Edkins AL; Eguchi T; Fleshner M; Foley KP; Fragkostefanakis S; Gestwicki J; Goloubinoff P; Heritz JA; Heske CM; Hibshman JD; Joutsen J; Li W; Lynes M; Mendillo ML; Mivechi N; Mokoena F; Okusha Y; Prahlad V; Repasky E; Sannino S; Scalia F; Shalgi R; Sistonen L; Sontag E; van Oosten-Hawle P; Vihervaara A; Wickramaratne A; Wang SXY; Zininga T
    Cell Stress Chaperones; 2024 Feb; 29(1):143-157. PubMed ID: 38311120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Hsf1 and the Heat Shock Response.
    Pincus D
    Adv Exp Med Biol; 2020; 1243():41-50. PubMed ID: 32297210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback regulation of the heat shock response.
    Voellmy R
    Handb Exp Pharmacol; 2006; (172):43-68. PubMed ID: 16610354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of germline proteostasis by HSF1 and insulin/IGF-1 signaling.
    Muhammad T; Li J
    Biochem Soc Trans; 2023 Apr; 51(2):501-512. PubMed ID: 36892215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.