These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
640 related articles for article (PubMed ID: 21536720)
1. Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Lee I; Blom UM; Wang PI; Shim JE; Marcotte EM Genome Res; 2011 Jul; 21(7):1109-21. PubMed ID: 21536720 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide meta-analysis of genetic susceptible genes for Type 2 Diabetes. Hale PJ; López-Yunez AM; Chen JY BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S16. PubMed ID: 23281828 [TBL] [Abstract][Full Text] [Related]
3. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data. Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810 [TBL] [Abstract][Full Text] [Related]
4. Integrated enrichment analysis of variants and pathways in genome-wide association studies indicates central role for IL-2 signaling genes in type 1 diabetes, and cytokine signaling genes in Crohn's disease. Carbonetto P; Stephens M PLoS Genet; 2013; 9(10):e1003770. PubMed ID: 24098138 [TBL] [Abstract][Full Text] [Related]
5. Integrating pathway analysis and genetics of gene expression for genome-wide association studies. Zhong H; Yang X; Kaplan LM; Molony C; Schadt EE Am J Hum Genet; 2010 Apr; 86(4):581-91. PubMed ID: 20346437 [TBL] [Abstract][Full Text] [Related]
6. Guilt by rewiring: gene prioritization through network rewiring in genome wide association studies. Hou L; Chen M; Zhang CK; Cho J; Zhao H Hum Mol Genet; 2014 May; 23(10):2780-90. PubMed ID: 24381306 [TBL] [Abstract][Full Text] [Related]
7. Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data. Fernández-Tajes J; Gaulton KJ; van de Bunt M; Torres J; Thurner M; Mahajan A; Gloyn AL; Lage K; McCarthy MI Genome Med; 2019 Mar; 11(1):19. PubMed ID: 30914061 [TBL] [Abstract][Full Text] [Related]
8. GWAB: a web server for the network-based boosting of human genome-wide association data. Shim JE; Bang C; Yang S; Lee T; Hwang S; Kim CY; Singh-Blom UM; Marcotte EM; Lee I Nucleic Acids Res; 2017 Jul; 45(W1):W154-W161. PubMed ID: 28449091 [TBL] [Abstract][Full Text] [Related]
9. Comparison of automated candidate gene prediction systems using genes implicated in type 2 diabetes by genome-wide association studies. Teber ET; Liu JY; Ballouz S; Fatkin D; Wouters MA BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S69. PubMed ID: 19208173 [TBL] [Abstract][Full Text] [Related]
10. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases. Lin PL; Yu YW; Chung RH PLoS One; 2016; 11(9):e0162910. PubMed ID: 27622767 [TBL] [Abstract][Full Text] [Related]
11. FLAGS: A Flexible and Adaptive Association Test for Gene Sets Using Summary Statistics. Huang J; Wang K; Wei P; Liu X; Liu X; Tan K; Boerwinkle E; Potash JB; Han S Genetics; 2016 Mar; 202(3):919-29. PubMed ID: 26773050 [TBL] [Abstract][Full Text] [Related]
12. Binomial Mixture Model Based Association Testing to Account for Genetic Heterogeneity for GWAS. Xu Z; Pan W Genet Epidemiol; 2016 Apr; 40(3):202-9. PubMed ID: 26916514 [TBL] [Abstract][Full Text] [Related]
13. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. Rossin EJ; Lage K; Raychaudhuri S; Xavier RJ; Tatar D; Benita Y; ; Cotsapas C; Daly MJ PLoS Genet; 2011 Jan; 7(1):e1001273. PubMed ID: 21249183 [TBL] [Abstract][Full Text] [Related]
14. Identification of novel susceptibility genes associated with seven autoimmune disorders using whole genome molecular interaction networks. Kara S; Pirela-Morillo GA; Gilliam CT; Wilson GD J Autoimmun; 2019 Feb; 97():48-58. PubMed ID: 30391024 [TBL] [Abstract][Full Text] [Related]
15. Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets. Xiong Q; Ancona N; Hauser ER; Mukherjee S; Furey TS Genome Res; 2012 Feb; 22(2):386-97. PubMed ID: 21940837 [TBL] [Abstract][Full Text] [Related]
16. Modeling regulatory network topology improves genome-wide analyses of complex human traits. Zhu X; Duren Z; Wong WH Nat Commun; 2021 May; 12(1):2851. PubMed ID: 33990562 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Burdon KP; Fogarty RD; Shen W; Abhary S; Kaidonis G; Appukuttan B; Hewitt AW; Sharma S; Daniell M; Essex RW; Chang JH; Klebe S; Lake SR; Pal B; Jenkins A; Govindarjan G; Sundaresan P; Lamoureux EL; Ramasamy K; Pefkianaki M; Hykin PG; Petrovsky N; Brown MA; Gillies MC; Craig JE Diabetologia; 2015 Oct; 58(10):2288-97. PubMed ID: 26188370 [TBL] [Abstract][Full Text] [Related]
18. Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis. Duan S; Luo X; Dong C Gene; 2013 Dec; 531(2):347-54. PubMed ID: 23994195 [TBL] [Abstract][Full Text] [Related]
19. Prioritisation and network analysis of Crohn's disease susceptibility genes. Muraro D; Lauffenburger DA; Simmons A PLoS One; 2014; 9(9):e108624. PubMed ID: 25268122 [TBL] [Abstract][Full Text] [Related]
20. COVID-GWAB: A Web-Based Prediction of COVID-19 Host Genes via Network Boosting of Genome-Wide Association Data. Baek S; Yang S; Lee I Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]