These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21536908)

  • 1. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions.
    Alvarez-Puebla RA; Agarwal A; Manna P; Khanal BP; Aldeanueva-Potel P; Carbó-Argibay E; Pazos-Pérez N; Vigderman L; Zubarev ER; Kotov NA; Liz-Marzán LM
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8157-61. PubMed ID: 21536908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy.
    Nguyen TH; Zhang Z; Mustapha A; Li H; Lin M
    J Agric Food Chem; 2014 Oct; 62(43):10445-51. PubMed ID: 25317673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Various Types of Nanorods as Sensitive Surface-Enhanced Raman Scattering Substrates.
    Kuo HF; Huang YJ; Chen YT
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):581-90. PubMed ID: 26011891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals.
    Mueller NS; Pfitzner E; Okamura Y; Gordeev G; Kusch P; Lange H; Heberle J; Schulz F; Reich S
    ACS Nano; 2021 Mar; 15(3):5523-5533. PubMed ID: 33667335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of local surface plasmon resonance (LSPR) effect by biocompatible metal clustering based on ZnO nanorods in Raman measurements.
    Lee S; Lee SH; Paulson B; Lee JC; Kim JK
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():203-208. PubMed ID: 29935391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold Nanorods as Surface-Enhanced Raman Spectroscopy Substrates for Rapid and Sensitive Analysis of Allura Red and Sunset Yellow in Beverages.
    Ou Y; Wang X; Lai K; Huang Y; Rasco BA; Fan Y
    J Agric Food Chem; 2018 Mar; 66(11):2954-2961. PubMed ID: 29489346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides.
    Costa JC; Ando RA; Sant'Ana AC; Rossi LM; Santos PS; Temperini ML; Corio P
    Phys Chem Chem Phys; 2009 Sep; 11(34):7491-8. PubMed ID: 19690724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods.
    Strickland AD; Batt CA
    Anal Chem; 2009 Apr; 81(8):2895-903. PubMed ID: 19301846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Phospholipid Bilayers on Gold Nanorods by Plasmon Resonance Sensing and Surface-Enhanced Raman Scattering.
    Matthews JR; Payne CM; Hafner JH
    Langmuir; 2015 Sep; 31(36):9893-900. PubMed ID: 26302310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.
    Mao M; Zhou B; Tang X; Chen C; Ge M; Li P; Huang X; Yang L; Liu J
    Chemistry; 2018 Mar; 24(16):4094-4102. PubMed ID: 29327504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy.
    Zhang X; Zheng Y; Liu X; Lu W; Dai J; Lei DY; MacFarlane DR
    Adv Mater; 2015 Feb; 27(6):1090-6. PubMed ID: 25534763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides.
    Saute B; Premasiri R; Ziegler L; Narayanan R
    Analyst; 2012 Nov; 137(21):5082-7. PubMed ID: 22977883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal ablation of target cancer cells using polydopamine-encapsulated gold nanorods as multifunctional agents.
    Sun C; Gao M; Zhang X
    Anal Bioanal Chem; 2017 Aug; 409(20):4915-4926. PubMed ID: 28585085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering.
    Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H
    Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic surface-enhanced Raman spectroscopy for the detection of acephate residue in rice by using gold nanorods modified with cysteamine and multivariant methods.
    Weng S; Zhu W; Li P; Yuan H; Zhang X; Zheng L; Zhao J; Huang L; Han P
    Food Chem; 2020 Apr; 310():125855. PubMed ID: 31735463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ controlled sputtering deposition of gold nanoparticles on MnO2 nanorods as surface-enhanced Raman scattering substrates for molecular detection.
    Jiang T; Zhang L; Jin H; Wang X; Zhou J
    Dalton Trans; 2015 Apr; 44(16):7606-12. PubMed ID: 25812162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold-nanorod-enhanced Raman spectroscopy encoded micro-quartz pieces for the multiplex detection of biomolecules.
    Wang B; Guan T; Jiang J; He Q; Chen X; Feng G; Lu B; Zhou X; He Y
    Anal Bioanal Chem; 2019 Aug; 411(21):5509-5518. PubMed ID: 31280475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures.
    Rong Z; Wang C; Wang J; Wang D; Xiao R; Wang S
    Biosens Bioelectron; 2016 Oct; 84():15-21. PubMed ID: 27149164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J
    Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.