These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
593 related articles for article (PubMed ID: 21537331)
1. Antidepressants recruit new neurons to improve stress response regulation. Surget A; Tanti A; Leonardo ED; Laugeray A; Rainer Q; Touma C; Palme R; Griebel G; Ibarguen-Vargas Y; Hen R; Belzung C Mol Psychiatry; 2011 Dec; 16(12):1177-88. PubMed ID: 21537331 [TBL] [Abstract][Full Text] [Related]
2. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: involvement of HPA axis and hippocampal neurogenesis. Li HY; Zhao YH; Zeng MJ; Fang F; Li M; Qin TT; Ye LY; Li HW; Qu R; Ma SP Psychopharmacology (Berl); 2017 Nov; 234(22):3385-3394. PubMed ID: 28875366 [TBL] [Abstract][Full Text] [Related]
3. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Surget A; Saxe M; Leman S; Ibarguen-Vargas Y; Chalon S; Griebel G; Hen R; Belzung C Biol Psychiatry; 2008 Aug; 64(4):293-301. PubMed ID: 18406399 [TBL] [Abstract][Full Text] [Related]
4. Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Tanti A; Westphal WP; Girault V; Brizard B; Devers S; Leguisquet AM; Surget A; Belzung C Hippocampus; 2013 Sep; 23(9):797-811. PubMed ID: 23592526 [TBL] [Abstract][Full Text] [Related]
5. Decline of hippocampal stress reactivity and neuronal ensemble coherence in a mouse model of depression. Law J; Ibarguen-Vargas Y; Belzung C; Surget A Psychoneuroendocrinology; 2016 May; 67():113-23. PubMed ID: 26881837 [TBL] [Abstract][Full Text] [Related]
6. Antidepressant treatment differentially affects the phenotype of high and low stress reactive mice. Surget A; Van Nieuwenhuijzen PS; Heinzmann JM; Knapman A; McIlwrick S; Westphal WP; Touma C; Belzung C Neuropharmacology; 2016 Nov; 110(Pt A):37-47. PubMed ID: 27395785 [TBL] [Abstract][Full Text] [Related]
7. Neurogenesis-independent antidepressant-like effects on behavior and stress axis response of a dual orexin receptor antagonist in a rodent model of depression. Nollet M; Gaillard P; Tanti A; Girault V; Belzung C; Leman S Neuropsychopharmacology; 2012 Sep; 37(10):2210-21. PubMed ID: 22713907 [TBL] [Abstract][Full Text] [Related]
8. Antidepressant-like effect of the water extract of the fixed combination of Gardenia jasminoides, Citrus aurantium and Magnolia officinalis in a rat model of chronic unpredictable mild stress. Xing H; Zhang K; Zhang R; Shi H; Bi K; Chen X Phytomedicine; 2015 Dec; 22(13):1178-85. PubMed ID: 26598917 [TBL] [Abstract][Full Text] [Related]
9. Chronic activation of NPFFR2 stimulates the stress-related depressive behaviors through HPA axis modulation. Lin YT; Liu TY; Yang CY; Yu YL; Chen TC; Day YJ; Chang CC; Huang GJ; Chen JC Psychoneuroendocrinology; 2016 Sep; 71():73-85. PubMed ID: 27243477 [TBL] [Abstract][Full Text] [Related]
10. Testosterone has antidepressant-like efficacy and facilitates imipramine-induced neuroplasticity in male rats exposed to chronic unpredictable stress. Wainwright SR; Workman JL; Tehrani A; Hamson DK; Chow C; Lieblich SE; Galea LA Horm Behav; 2016 Mar; 79():58-69. PubMed ID: 26774465 [TBL] [Abstract][Full Text] [Related]
11. The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. Masi G; Brovedani P CNS Drugs; 2011 Nov; 25(11):913-31. PubMed ID: 22054117 [TBL] [Abstract][Full Text] [Related]
12. Suppression of adult neurogenesis leads to an increased hypothalamo-pituitary-adrenal axis response. Schloesser RJ; Manji HK; Martinowich K Neuroreport; 2009 Apr; 20(6):553-7. PubMed ID: 19322118 [TBL] [Abstract][Full Text] [Related]
13. Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis. Gobinath AR; Workman JL; Chow C; Lieblich SE; Galea LA Neuropharmacology; 2016 Feb; 101():165-78. PubMed ID: 26391064 [TBL] [Abstract][Full Text] [Related]
15. Maternal exercise increases but concurrent maternal fluoxetine prevents the increase in hippocampal neurogenesis of adult offspring. Gobinath AR; Wong S; Chow C; Lieblich SE; Barr AM; Galea LAM Psychoneuroendocrinology; 2018 May; 91():186-197. PubMed ID: 29579632 [TBL] [Abstract][Full Text] [Related]
16. A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Farooq RK; Tanti A; Ainouche S; Roger S; Belzung C; Camus V Psychoneuroendocrinology; 2018 Nov; 97():120-130. PubMed ID: 30015007 [TBL] [Abstract][Full Text] [Related]
17. Dammarane sapogenins alleviates depression-like behaviours induced by chronic social defeat stress in mice through the promotion of the BDNF signalling pathway and neurogenesis in the hippocampus. Jiang N; Lv JW; Wang HX; Lu C; Wang Q; Xia TJ; Bao Y; Li SS; Liu XM Brain Res Bull; 2019 Nov; 153():239-249. PubMed ID: 31542427 [TBL] [Abstract][Full Text] [Related]
18. Antidepressant and pro-neurogenic effects of agmatine in a mouse model of stress induced by chronic exposure to corticosterone. Olescowicz G; Neis VB; Fraga DB; Rosa PB; Azevedo DP; Melleu FF; Brocardo PS; Gil-Mohapel J; Rodrigues ALS Prog Neuropsychopharmacol Biol Psychiatry; 2018 Feb; 81():395-407. PubMed ID: 28842257 [TBL] [Abstract][Full Text] [Related]
19. Ro41-5253, a selective antagonist of retinoic acid receptor α, ameliorates chronic unpredictable mild stress-induced depressive-like behaviors in rats: Involvement of regulating HPA axis and improving hippocampal neuronal deficits. Ke Q; Li R; Cai L; Wu SD; Li CM Brain Res Bull; 2019 Mar; 146():302-309. PubMed ID: 30711623 [TBL] [Abstract][Full Text] [Related]
20. PINK1 deficiency is associated with increased deficits of adult hippocampal neurogenesis and lowers the threshold for stress-induced depression in mice. Agnihotri SK; Sun L; Yee BK; Shen R; Akundi RS; Zhi L; Duncan MJ; Cass WA; Büeler H Behav Brain Res; 2019 May; 363():161-172. PubMed ID: 30735759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]