BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 2153768)

  • 1. Dissection of the neuron network in the catfish inner retina. IV. Bidirectional interactions between amacrine and ganglion cells.
    Sakai HM; Naka KI
    J Neurophysiol; 1990 Jan; 63(1):105-19. PubMed ID: 2153768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of the neuron network in the catfish inner retina. V. Interactions between NA and NB amacrine cells.
    Sakai HM; Naka KI
    J Neurophysiol; 1990 Jan; 63(1):120-30. PubMed ID: 2153769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissection of the neuron network in the catfish inner retina. I. Transmission to ganglion cells.
    Sakai HM; Naka K
    J Neurophysiol; 1988 Nov; 60(5):1549-67. PubMed ID: 2848933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissection of the neuron network in the catfish inner retina. II. Interactions between ganglion cells.
    Sakai HM; Naka K
    J Neurophysiol; 1988 Nov; 60(5):1568-83. PubMed ID: 2848934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal transmission in the catfish retina. V. Sensitivity and circuit.
    Sakai HM; Naka K
    J Neurophysiol; 1987 Dec; 58(6):1329-50. PubMed ID: 2830371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal transmission in the catfish retina. IV. Transmission to ganglion cells.
    Sakai HM; Naka K
    J Neurophysiol; 1987 Dec; 58(6):1307-28. PubMed ID: 2830370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response dynamics and receptive-field organization of catfish amacrine cells.
    Sakai HM; Naka K
    J Neurophysiol; 1992 Feb; 67(2):430-42. PubMed ID: 1569468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexity and frequency hierarchies in the catfish retina.
    Korenberg MJ; Sakai HM; Naka KI
    Front Med Biol Eng; 1997; 8(2):87-107. PubMed ID: 9257131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing of color- and noncolor-coded signals in the gourami retina. III. Ganglion cells.
    Sakai HM; Machuca H; Korenberg MJ; Naka KI
    J Neurophysiol; 1997 Oct; 78(4):2034-47. PubMed ID: 9325371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response dynamics and receptive-field organization of catfish ganglion cells.
    Sakai HM; Naka K
    J Gen Physiol; 1995 Jun; 105(6):795-814. PubMed ID: 7561744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of the ganglion cell response in the catfish and frog retinas.
    Sakuranaga M; Ando Y; Naka K
    J Gen Physiol; 1987 Aug; 90(2):229-59. PubMed ID: 3498795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Push-pull modulation of ganglion cell responses of carp retina by amacrine cells.
    Toyoda J; Shimbo K; Kondo H; Kujiraoka T
    Neurosci Lett; 1992 Aug; 142(1):41-4. PubMed ID: 1407715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal transmission in the catfish retina. I. Transmission in the outer retina.
    Sakuranaga M; Naka K
    J Neurophysiol; 1985 Feb; 53(2):373-89. PubMed ID: 2984347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast rectification and distributed encoding By ON-OFF amacrine cells in the retina.
    Burkhardt DA; Fahey PK
    J Neurophysiol; 1999 Oct; 82(4):1676-88. PubMed ID: 10515958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and transformation of second-order nonlinearity in catfish retina.
    Naka K; Sakai HM; Ishii N
    Ann Biomed Eng; 1988; 16(1):53-64. PubMed ID: 3408051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal contrast enhancement via GABAC feedback at bipolar terminals in the tiger salamander retina.
    Dong CJ; Werblin FS
    J Neurophysiol; 1998 Apr; 79(4):2171-80. PubMed ID: 9535976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrast gain control in the lower vertebrate retinas.
    Sakai HM; Wang JL; Naka K
    J Gen Physiol; 1995 Jun; 105(6):815-35. PubMed ID: 7561745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of aspartate and glutamate in synaptic transmission in rabbit retina. II. Inner plexiform layer.
    Bloomfield SA; Dowling JE
    J Neurophysiol; 1985 Mar; 53(3):714-25. PubMed ID: 2858517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-evoked oscillatory discharges in retinal ganglion cells are generated by rhythmic synaptic inputs.
    Arai I; Yamada Y; Asaka T; Tachibana M
    J Neurophysiol; 2004 Aug; 92(2):715-25. PubMed ID: 15277593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bipolar origin of synaptic inputs to sustained OFF-ganglion cells in the mudpuppy retina.
    Arkin MS; Miller RF
    J Neurophysiol; 1988 Sep; 60(3):1122-42. PubMed ID: 3171660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.