These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 21537892)
1. Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis. Jia X; Li S; Xie S; Wen J Appl Biochem Biotechnol; 2012 Sep; 168(1):1-9. PubMed ID: 21537892 [TBL] [Abstract][Full Text] [Related]
2. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Li S; Wen J; Jia X Appl Microbiol Biotechnol; 2011 Aug; 91(3):577-89. PubMed ID: 21533914 [TBL] [Abstract][Full Text] [Related]
3. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368 [TBL] [Abstract][Full Text] [Related]
4. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927 [TBL] [Abstract][Full Text] [Related]
5. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Li S; Huang D; Li Y; Wen J; Jia X Microb Cell Fact; 2012 Aug; 11():101. PubMed ID: 22862776 [TBL] [Abstract][Full Text] [Related]
6. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Lu J; Brigham CJ; Gai CS; Sinskey AJ Appl Microbiol Biotechnol; 2012 Oct; 96(1):283-97. PubMed ID: 22864971 [TBL] [Abstract][Full Text] [Related]
7. Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways. Li S; Jia X; Wen J Biotechnol Lett; 2012 Dec; 34(12):2253-8. PubMed ID: 22941373 [TBL] [Abstract][Full Text] [Related]
8. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. Qi H; Li S; Zhao S; Huang D; Xia M; Wen J PLoS One; 2014; 9(4):e93815. PubMed ID: 24705866 [TBL] [Abstract][Full Text] [Related]
9. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Yamamoto S; Suda M; Niimi S; Inui M; Yukawa H Biotechnol Bioeng; 2013 Nov; 110(11):2938-48. PubMed ID: 23737329 [TBL] [Abstract][Full Text] [Related]
10. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Atsumi S; Li Z; Liao JC Appl Environ Microbiol; 2009 Oct; 75(19):6306-11. PubMed ID: 19684168 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Park SH; Kim S; Hahn JS Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745 [TBL] [Abstract][Full Text] [Related]
12. Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Blombach B; Eikmanns BJ Bioeng Bugs; 2011; 2(6):346-50. PubMed ID: 22008938 [TBL] [Abstract][Full Text] [Related]
13. Bacterial production of isobutanol without expensive reagents. Akita H; Nakashima N; Hoshino T Appl Microbiol Biotechnol; 2015 Jan; 99(2):991-9. PubMed ID: 25359477 [TBL] [Abstract][Full Text] [Related]
14. Engineering Corynebacterium glutamicum for isobutanol production. Smith KM; Cho KM; Liao JC Appl Microbiol Biotechnol; 2010 Jul; 87(3):1045-55. PubMed ID: 20376637 [TBL] [Abstract][Full Text] [Related]
15. Use of the valine biosynthetic pathway to convert glucose into isobutanol. Savrasova EA; Kivero AD; Shakulov RS; Stoynova NV J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1287-94. PubMed ID: 21161324 [TBL] [Abstract][Full Text] [Related]
16. Isobutanol production from an engineered Shewanella oneidensis MR-1. Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214 [TBL] [Abstract][Full Text] [Related]
18. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Lin PP; Mi L; Morioka AH; Yoshino KM; Konishi S; Xu SC; Papanek BA; Riley LA; Guss AM; Liao JC Metab Eng; 2015 Sep; 31():44-52. PubMed ID: 26170002 [TBL] [Abstract][Full Text] [Related]
19. Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway. Gu J; Zhou J; Zhang Z; Kim CH; Jiang B; Shi J; Hao J Metab Eng; 2017 Sep; 43(Pt A):71-84. PubMed ID: 28802880 [TBL] [Abstract][Full Text] [Related]
20. Microbial engineering for the production of isobutanol: current status and future directions. Lakshmi NM; Binod P; Sindhu R; Awasthi MK; Pandey A Bioengineered; 2021 Dec; 12(2):12308-12321. PubMed ID: 34927549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]