These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 21538002)
1. Glaucomatous eye macular ganglion cell complex thickness and its relation to temporal circumpapillary retinal nerve fiber layer thickness. Kita Y; Kita R; Nitta A; Nishimura C; Tomita G Jpn J Ophthalmol; 2011 May; 55(3):228-234. PubMed ID: 21538002 [TBL] [Abstract][Full Text] [Related]
2. Measurement of macular ganglion cell layer and circumpapillary retinal nerve fiber layer to detect paracentral scotoma in early glaucoma. Lee J; Hangai M; Kimura Y; Takayama K; Kee C; Yoshimura N Graefes Arch Clin Exp Ophthalmol; 2013 Aug; 251(8):2003-12. PubMed ID: 23620092 [TBL] [Abstract][Full Text] [Related]
3. Structure-function relationship and diagnostic value of RNFL Area Index compared with circumpapillary RNFL thickness by spectral-domain OCT. Park HY; Park CK J Glaucoma; 2013 Feb; 22(2):88-97. PubMed ID: 23232911 [TBL] [Abstract][Full Text] [Related]
4. Integrating Macular Ganglion Cell Inner Plexiform Layer and Parapapillary Retinal Nerve Fiber Layer Measurements to Detect Glaucoma Progression. Hou HW; Lin C; Leung CK Ophthalmology; 2018 Jun; 125(6):822-831. PubMed ID: 29433852 [TBL] [Abstract][Full Text] [Related]
5. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. Leung CKS; Ye C; Weinreb RN; Yu M; Lai G; Lam DS Ophthalmology; 2013 Dec; 120(12):2485-2492. PubMed ID: 23993360 [TBL] [Abstract][Full Text] [Related]
6. Comparing the Rates of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Loss in Healthy Eyes and in Glaucoma Eyes. Hammel N; Belghith A; Weinreb RN; Medeiros FA; Mendoza N; Zangwill LM Am J Ophthalmol; 2017 Jun; 178():38-50. PubMed ID: 28315655 [TBL] [Abstract][Full Text] [Related]
7. Peripapillary retinal nerve fiber layer thickness in sickle-cell hemoglobinopathies using spectral-domain optical coherence tomography. Chow CC; Shah RJ; Lim JI; Chau FY; Hallak JA; Vajaranant TS Am J Ophthalmol; 2013 Mar; 155(3):456-464.e2. PubMed ID: 23218697 [TBL] [Abstract][Full Text] [Related]
8. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Sihota R; Sony P; Gupta V; Dada T; Singh R Invest Ophthalmol Vis Sci; 2006 May; 47(5):2006-10. PubMed ID: 16639009 [TBL] [Abstract][Full Text] [Related]
9. Detection of macular and circumpapillary structural loss in normal hemifield areas of glaucomatous eyes with localized visual field defects using spectral-domain optical coherence tomography. Na JH; Kook MS; Lee Y; Yu SJ; Choi J Graefes Arch Clin Exp Ophthalmol; 2012 Apr; 250(4):595-602. PubMed ID: 22169979 [TBL] [Abstract][Full Text] [Related]
10. Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities. Hwang YH; Kim YY; Kim HK; Sohn YH Ophthalmology; 2013 Jul; 120(7):1380-7. PubMed ID: 23541761 [TBL] [Abstract][Full Text] [Related]
11. Retinal nerve fiber layer progression in glaucoma: a comparison between retinal nerve fiber layer thickness and retardance. Xu G; Weinreb RN; Leung CKS Ophthalmology; 2013 Dec; 120(12):2493-2500. PubMed ID: 24053994 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Kanamori A; Nakamura M; Escano MF; Seya R; Maeda H; Negi A Am J Ophthalmol; 2003 Apr; 135(4):513-20. PubMed ID: 12654369 [TBL] [Abstract][Full Text] [Related]
13. Diagnostic precision of retinal nerve fiber layer and macular thickness asymmetry parameters for identifying early primary open-angle glaucoma. Sullivan-Mee M; Ruegg CC; Pensyl D; Halverson K; Qualls C Am J Ophthalmol; 2013 Sep; 156(3):567-577.e1. PubMed ID: 23810475 [TBL] [Abstract][Full Text] [Related]
14. Ganglion Cell-Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma. Shin JW; Sung KR; Lee GC; Durbin MK; Cheng D Ophthalmology; 2017 Oct; 124(10):1466-1474. PubMed ID: 28549518 [TBL] [Abstract][Full Text] [Related]
15. Detection of glaucomatous progression by spectral-domain optical coherence tomography. Na JH; Sung KR; Lee JR; Lee KS; Baek S; Kim HK; Sohn YH Ophthalmology; 2013 Jul; 120(7):1388-95. PubMed ID: 23474248 [TBL] [Abstract][Full Text] [Related]
16. Macular imaging in highly myopic eyes with and without glaucoma. Nakano N; Hangai M; Noma H; Nukada M; Mori S; Morooka S; Takayama K; Kimura Y; Ikeda HO; Akagi T; Yoshimura N Am J Ophthalmol; 2013 Sep; 156(3):511-523.e6. PubMed ID: 23777978 [TBL] [Abstract][Full Text] [Related]
17. Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma. Hirashima T; Hangai M; Nukada M; Nakano N; Morooka S; Akagi T; Nonaka A; Yoshimura N Graefes Arch Clin Exp Ophthalmol; 2013 Jan; 251(1):129-37. PubMed ID: 22684903 [TBL] [Abstract][Full Text] [Related]
18. Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes. Pazos M; Dyrda AA; Biarnés M; Gómez A; Martín C; Mora C; Fatti G; Antón A Ophthalmology; 2017 Aug; 124(8):1218-1228. PubMed ID: 28461015 [TBL] [Abstract][Full Text] [Related]
19. Progression detection capability of macular thickness in advanced glaucomatous eyes. Sung KR; Sun JH; Na JH; Lee JY; Lee Y Ophthalmology; 2012 Feb; 119(2):308-13. PubMed ID: 22182800 [TBL] [Abstract][Full Text] [Related]
20. Glaucoma diagnostic ability of ganglion cell-inner plexiform layer thickness differs according to the location of visual field loss. Shin HY; Park HL; Jung KI; Choi JA; Park CK Ophthalmology; 2014 Jan; 121(1):93-99. PubMed ID: 23962652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]