These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21538110)

  • 1. Reversible immobilization of glucoamylase onto magnetic carbon nanotubes functionalized with dendrimer.
    Zhao G; Li Y; Wang J; Zhu H
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):591-601. PubMed ID: 21538110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and functionalization of dendritic poly(amidoamine)-immobilized magnetic polymer composite microspheres.
    Liu H; Guo J; Jin L; Yang W; Wang C
    J Phys Chem B; 2008 Mar; 112(11):3315-21. PubMed ID: 18281972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers.
    Wang J; Zhao G; Li Y; Liu X; Hou P
    Appl Microbiol Biotechnol; 2013 Jan; 97(2):681-92. PubMed ID: 22391974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of glucoamylase onto polyaniline-grafted magnetic hydrogel via adsorption and adsorption/cross-linking.
    Bayramoglu G; Altintas B; Arica MY
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1149-59. PubMed ID: 22419218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of glucoamylase on triazine-functionalized Fe
    Amirbandeh M; Taheri-Kafrani A
    Int J Biol Macromol; 2016 Dec; 93(Pt A):1183-1191. PubMed ID: 27693337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies.
    Cang-Rong JT; Pastorin G
    Nanotechnology; 2009 Jun; 20(25):255102. PubMed ID: 19487802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process.
    Goh WJ; Makam VS; Hu J; Kang L; Zheng M; Yoong SL; Udalagama CN; Pastorin G
    Langmuir; 2012 Dec; 28(49):16864-73. PubMed ID: 23148719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase.
    Nadar SS; Rathod VK
    Enzyme Microb Technol; 2016 Feb; 83():78-87. PubMed ID: 26777253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-enzyme immobilization approach using carbon nanotubes/silica as support.
    Du K; Sun J; Zhou X; Feng W; Jiang X; Ji P
    Biotechnol Prog; 2015; 31(1):42-7. PubMed ID: 25378233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible his-tagged enzyme immobilization on functionalized carbon nanotubes as nanoscale biocatalyst.
    Wang L; Jiang R
    Methods Mol Biol; 2011; 743():95-106. PubMed ID: 21553185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Affinity covalent immobilization of glucoamylase onto ρ-benzoquinone-activated alginate beads: II. Enzyme immobilization and characterization.
    Eldin MS; Seuror EI; Nasr MA; Tieama HA
    Appl Biochem Biotechnol; 2011 May; 164(1):45-57. PubMed ID: 21063806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes.
    Wang L; Wei L; Chen Y; Jiang R
    J Biotechnol; 2010 Oct; 150(1):57-63. PubMed ID: 20630484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of glucoamylase by adsorption on carbon supports and its application for heterogeneous hydrolysis of dextrin.
    Kovalenko GA; Perminova LV
    Carbohydr Res; 2008 May; 343(7):1202-11. PubMed ID: 18346718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible immobilization of glucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine.
    Torres R; Pessela BC; Mateo C; Ortiz C; Fuentes M; Guisan JM; Fernandez-Lafuente R
    Biotechnol Prog; 2004; 20(4):1297-300. PubMed ID: 15296467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of a mesoporous functional copolymer bead carrier and its properties for glucoamylase immobilization.
    Bai Y; Li Y; Lei L
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):457-64. PubMed ID: 19205693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of a green nano-support for the covalent immobilization of glucoamylase from Neurospora sitophila.
    Syed F; Ali K; Asad MJ; Fraz MG; Khan Z; Imran M; Taj R; Ahmad A
    J Photochem Photobiol B; 2016 Sep; 162():309-317. PubMed ID: 27395794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamidoamine dendrimer-functionalized carbon nanotubes-mediated GFP gene transfection for HeLa cells: effects of different types of carbon nanotubes.
    Yang K; Qin W; Tang H; Tan L; Xie Q; Ma M; Zhang Y; Yao S
    J Biomed Mater Res A; 2011 Nov; 99(2):231-9. PubMed ID: 21976448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine) grafted carbon nanotubes.
    Neelgund GM; Oki A; Luo Z
    Colloids Surf B Biointerfaces; 2012 Dec; 100():215-21. PubMed ID: 22766300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides.
    Ma R; Hu J; Cai Z; Ju H
    Nanoscale; 2014 Mar; 6(6):3150-6. PubMed ID: 24496404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Catalytic properties of glucoamylase immobilized on the synthetic carbon material Sibunit].
    Kovalenko GA; Perminova LV; Terent'eva TG; Plaksin GV
    Prikl Biokhim Mikrobiol; 2007; 43(4):412-8. PubMed ID: 17929567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.