These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 21538245)
1. Acinetobacter baumannii biofilms: variations among strains and correlations with other cell properties. McQueary CN; Actis LA J Microbiol; 2011 Apr; 49(2):243-50. PubMed ID: 21538245 [TBL] [Abstract][Full Text] [Related]
2. Enhancing pili assembly and biofilm formation in Acinetobacter baumannii ATCC19606 using non-native acyl-homoserine lactones. Luo LM; Wu LJ; Xiao YL; Zhao D; Chen ZX; Kang M; Zhang Q; Xie Y BMC Microbiol; 2015 Mar; 15():62. PubMed ID: 25888221 [TBL] [Abstract][Full Text] [Related]
3. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Tomaras AP; Dorsey CW; Edelmann RE; Actis LA Microbiology (Reading); 2003 Dec; 149(Pt 12):3473-3484. PubMed ID: 14663080 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing Acinetobacter baumannii strain on biofilm formation and attachment to eukaryotic cells. Álvarez-Fraga L; Pérez A; Rumbo-Feal S; Merino M; Vallejo JA; Ohneck EJ; Edelmann RE; Beceiro A; Vázquez-Ucha JC; Valle J; Actis LA; Bou G; Poza M Virulence; 2016 May; 7(4):443-55. PubMed ID: 26854744 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for Pakharukova N; Tuittila M; Paavilainen S; Malmi H; Parilova O; Teneberg S; Knight SD; Zavialov AV Proc Natl Acad Sci U S A; 2018 May; 115(21):5558-5563. PubMed ID: 29735695 [No Abstract] [Full Text] [Related]
7. CsuA/BABCDE-dependent pili are not involved in the adherence of Acinetobacter baumannii ATCC19606(T) to human airway epithelial cells and their inflammatory response. de Breij A; Gaddy J; van der Meer J; Koning R; Koster A; van den Broek P; Actis L; Nibbering P; Dijkshoorn L Res Microbiol; 2009 Apr; 160(3):213-8. PubMed ID: 19530313 [TBL] [Abstract][Full Text] [Related]
8. A Light-Regulated Type I Pilus Contributes to Acinetobacter baumannii Biofilm, Motility, and Virulence Functions. Wood CR; Ohneck EJ; Edelmann RE; Actis LA Infect Immun; 2018 Sep; 86(9):. PubMed ID: 29891547 [TBL] [Abstract][Full Text] [Related]
9. Crystallization and preliminary X-ray diffraction analysis of the Csu pili CsuC-CsuA/B chaperone-major subunit pre-assembly complex from Acinetobacter baumannii. Pakharukova N; Tuittila M; Paavilainen S; Zavialov A Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):770-4. PubMed ID: 26057810 [TBL] [Abstract][Full Text] [Related]
10. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Gaddy JA; Tomaras AP; Actis LA Infect Immun; 2009 Aug; 77(8):3150-60. PubMed ID: 19470746 [TBL] [Abstract][Full Text] [Related]
11. Zur-regulated lipoprotein A contributes to the fitness of Acinetobacter baumannii. Lee EK; Choi CH; Oh MH J Microbiol; 2020 Jan; 58(1):67-77. PubMed ID: 31898255 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Greene C; Wu J; Rickard AH; Xi C Lett Appl Microbiol; 2016 Oct; 63(4):233-9. PubMed ID: 27479925 [TBL] [Abstract][Full Text] [Related]
13. Methylation, crystallization and SAD phasing of the Csu pilus CsuC-CsuE chaperone-adhesin subunit pre-assembly complex from Acinetobacter baumannii. Pakharukova N; Tuittila M; Paavilainen S; Zavialov A Acta Crystallogr F Struct Biol Commun; 2017 Aug; 73(Pt 8):450-454. PubMed ID: 28777087 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of pellicles formed by Acinetobacter baumannii at the air-liquid interface. Nait Chabane Y; Marti S; Rihouey C; Alexandre S; Hardouin J; Lesouhaitier O; Vila J; Kaplan JB; Jouenne T; Dé E PLoS One; 2014; 9(10):e111660. PubMed ID: 25360550 [TBL] [Abstract][Full Text] [Related]
15. Archaic and alternative chaperones preserve pilin folding energy by providing incomplete structural information. Pakharukova N; McKenna S; Tuittila M; Paavilainen S; Malmi H; Xu Y; Parilova O; Matthews S; Zavialov AV J Biol Chem; 2018 Nov; 293(44):17070-17080. PubMed ID: 30228191 [TBL] [Abstract][Full Text] [Related]
16. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. Nait Chabane Y; Mlouka MB; Alexandre S; Nicol M; Marti S; Pestel-Caron M; Vila J; Jouenne T; Dé E BMC Microbiol; 2014 Mar; 14():62. PubMed ID: 24621315 [TBL] [Abstract][Full Text] [Related]
17. Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. Pour NK; Dusane DH; Dhakephalkar PK; Zamin FR; Zinjarde SS; Chopade BA FEMS Immunol Med Microbiol; 2011 Aug; 62(3):328-38. PubMed ID: 21569125 [TBL] [Abstract][Full Text] [Related]
18. Pilus Production in Acinetobacter baumannii Is Growth Phase Dependent and Essential for Natural Transformation. Vesel N; Blokesch M J Bacteriol; 2021 Mar; 203(8):. PubMed ID: 33495250 [No Abstract] [Full Text] [Related]
19. Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Selvaraj A; Valliammai A; Sivasankar C; Suba M; Sakthivel G; Pandian SK Sci Rep; 2020 Dec; 10(1):21975. PubMed ID: 33319862 [TBL] [Abstract][Full Text] [Related]
20. Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates. Bardbari AM; Arabestani MR; Karami M; Keramat F; Alikhani MY; Bagheri KP Microb Pathog; 2017 Jul; 108():122-128. PubMed ID: 28457900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]