These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 21538394)
1. Ultrastructural investigation of intact orbital implant surfaces using atomic force microscopy. Choi S; Lee SJ; Shin JH; Cheong Y; Lee HJ; Paek JH; Kim JS; Jin KH; Park HK Scanning; 2011; 33(4):211-21. PubMed ID: 21538394 [TBL] [Abstract][Full Text] [Related]
2. Fibrovascularization of porous polyethylene (Medpor) orbital implant in a rabbit model. Jordan DR; Brownstein S; Dorey M; Yuen VH; Gilberg S Ophthalmic Plast Reconstr Surg; 2004 Mar; 20(2):136-43. PubMed ID: 15083083 [TBL] [Abstract][Full Text] [Related]
3. Porous polymer nanostructures fabricated by the surface-induced phase separation of polymer solutions in anodic aluminum oxide templates. Wei TH; Chi MH; Tsai CC; Ko HW; Chen JT Langmuir; 2013 Aug; 29(32):9972-8. PubMed ID: 23879683 [TBL] [Abstract][Full Text] [Related]
4. [Study of the three-dimensional structure and biointegrative characteristics of porous orbital implant materials]. Grusha IaO; Fedorov AA; Baranov PIu; Bakaeva TV; Pavliuk AS Vestn Oftalmol; 2010; 126(5):9-13. PubMed ID: 21328883 [TBL] [Abstract][Full Text] [Related]
5. Orbital implants insertion to improve ocular prostheses motility. Goiato MC; Haddad MF; dos Santos DM; Pesqueira AA; Ribeiro Pdo P; Moreno A J Craniofac Surg; 2010 May; 21(3):870-5. PubMed ID: 20485072 [TBL] [Abstract][Full Text] [Related]
6. Comparison of bacterial adhesion to dental materials of polyethylene terephthalate (PET) and polymethyl methacrylate (PMMA) using atomic force microscopy and scanning electron microscopy. Fang J; Wang C; Li Y; Zhao Z; Mei L Scanning; 2016 Nov; 38(6):665-670. PubMed ID: 26991988 [TBL] [Abstract][Full Text] [Related]
7. Enucleation with unwrapped porous and nonporous orbital implants: a 15-year experience. Trichopoulos N; Augsburger JJ Ophthalmic Plast Reconstr Surg; 2005 Sep; 21(5):331-6. PubMed ID: 16234693 [TBL] [Abstract][Full Text] [Related]
8. Behavior of various orbital implants under axial compression. Jordan DR; Ahuja N; Gilberg S; Bouchard R Ophthalmic Plast Reconstr Surg; 2005 May; 21(3):225-9. PubMed ID: 15942500 [TBL] [Abstract][Full Text] [Related]
9. Atomic force microscope nanolithography of polymethylmethacrylate polymer. Teixeira FS; Mansano RD; Salvadori MC; Cattani M; Brown IG Rev Sci Instrum; 2007 May; 78(5):053702. PubMed ID: 17552820 [TBL] [Abstract][Full Text] [Related]
10. Scanning electron microscopic examination of porous orbital implants. Mawn LA; Jordan DR; Gilberg S Can J Ophthalmol; 1998 Jun; 33(4):203-9. PubMed ID: 9660003 [TBL] [Abstract][Full Text] [Related]
11. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness. Walsh WR; Svehla MJ; Russell J; Saito M; Nakashima T; Gillies RM; Bruce W; Hori R Biomaterials; 2004 Sep; 25(20):4929-34. PubMed ID: 15109853 [TBL] [Abstract][Full Text] [Related]
12. The bioceramic orbital implant: a new generation of porous implants. Jordan DR; Mawn LA; Brownstein S; McEachren TM; Gilberg SM; Hill V; Grahovac SZ; Adenis JP Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):347-55. PubMed ID: 11021384 [TBL] [Abstract][Full Text] [Related]
13. Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Sul YT; Johansson C; Wennerberg A; Cho LR; Chang BS; Albrektsson T Int J Oral Maxillofac Implants; 2005; 20(3):349-59. PubMed ID: 15973946 [TBL] [Abstract][Full Text] [Related]
14. Effect of H2O2/HCl heat treatment of implants on in vivo peri-implant bone formation. Yang GL; He FM; Zhao SS; Wang XX; Zhao SF Int J Oral Maxillofac Implants; 2008; 23(6):1020-8. PubMed ID: 19216270 [TBL] [Abstract][Full Text] [Related]
15. Comparison of complication rates of porous anophthalmic orbital implants. Ramey N; Gupta D; Price K; Husain A; Richard M; Woodward J Ophthalmic Surg Lasers Imaging; 2011; 42(5):434-40. PubMed ID: 21899247 [TBL] [Abstract][Full Text] [Related]
16. The control of cell adhesion on a PMMA polymer surface consisting of nanopillar arrays. Ahn J; Son SJ; Min J J Biotechnol; 2013 Apr; 164(4):543-8. PubMed ID: 23353729 [TBL] [Abstract][Full Text] [Related]
17. Early Adhesion of Candida albicans onto Dental Acrylic Surfaces. Aguayo S; Marshall H; Pratten J; Bradshaw D; Brown JS; Porter SR; Spratt D; Bozec L J Dent Res; 2017 Jul; 96(8):917-923. PubMed ID: 28460191 [TBL] [Abstract][Full Text] [Related]
18. Porous and nonporous orbital implants for treating the anophthalmic socket: A meta-analysis of case series studies. Schellini S; Jorge E; Sousa R; Burroughs J; El-Dib R Orbit; 2016; 35(2):78-86. PubMed ID: 26928263 [TBL] [Abstract][Full Text] [Related]
19. Effect of nonsolvent on the formation of polymer nanomaterials in the nanopores of anodic aluminum oxide templates. Lee CW; Wei TH; Chang CW; Chen JT Macromol Rapid Commun; 2012 Aug; 33(16):1381-7. PubMed ID: 22605615 [TBL] [Abstract][Full Text] [Related]
20. Repair of bone segment defects with surface porous fiber-reinforced polymethyl methacrylate (PMMA) composite prosthesis: histomorphometric incorporation model and characterization by SEM. Hautamäki MP; Aho AJ; Alander P; Rekola J; Gunn J; Strandberg N; Vallittu PK Acta Orthop; 2008 Aug; 79(4):555-64. PubMed ID: 18766491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]