BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21538510)

  • 1. Role of trabecular microarchitecture in the formation, accumulation, and morphology of microdamage in human cancellous bone.
    Karim L; Vashishth D
    J Orthop Res; 2011 Nov; 29(11):1739-44. PubMed ID: 21538510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributions of Microdamage Are Altered Between Trabecular Rods and Plates in Cancellous Bone From Men With Type 2 Diabetes Mellitus.
    Sacher SE; Hunt HB; Lekkala S; Lopez KA; Potts J; Heilbronner AK; Stein EM; Hernandez CJ; Donnelly E
    J Bone Miner Res; 2022 Apr; 37(4):740-752. PubMed ID: 35064941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microarchitecture influences microdamage accumulation in human vertebral trabecular bone.
    Arlot ME; Burt-Pichat B; Roux JP; Vashishth D; Bouxsein ML; Delmas PD
    J Bone Miner Res; 2008 Oct; 23(10):1613-8. PubMed ID: 18518771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone.
    Lambers FM; Bouman AR; Tkachenko EV; Keaveny TM; Hernandez CJ
    J Biomech; 2014 Nov; 47(15):3605-12. PubMed ID: 25458150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility.
    Karim L; Vashishth D
    PLoS One; 2012; 7(4):e35047. PubMed ID: 22514706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between bone strain index, bone mass, microarchitecture and mechanical behavior in human vertebrae: an ex vivo study.
    Roux JP; Duboeuf F; Sornay-Rendu E; Rinaudo L; Ulivieri FM; Wegrzyn J; Chapurlat R
    Osteoporos Int; 2024 Jun; 35(6):1069-1075. PubMed ID: 38520505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone.
    Follet H; Viguet-Carrin S; Burt-Pichat B; Dépalle B; Bala Y; Gineyts E; Munoz F; Arlot M; Boivin G; Chapurlat RD; Delmas PD; Bouxsein ML
    J Orthop Res; 2011 Apr; 29(4):481-8. PubMed ID: 20957742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative relationships between microdamage and cancellous bone strength and stiffness.
    Hernandez CJ; Lambers FM; Widjaja J; Chapa C; Rimnac CM
    Bone; 2014 Sep; 66():205-13. PubMed ID: 24928495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paget's Disease of Long Bones: Microstructural Analyses of Historical Bone Samples.
    Nebot E; Heimel P; Tangl S; Dockner M; Patsch J; Weber GW; Pretterklieber M; Teschler-Nicola M; Pietschmann P
    Calcif Tissue Int; 2019 Jul; 105(1):15-25. PubMed ID: 30850857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-enzymatic glycation alters microdamage formation in human cancellous bone.
    Tang SY; Vashishth D
    Bone; 2010 Jan; 46(1):148-54. PubMed ID: 19747573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of subchondral bone microdamage quantification using contrast-enhanced imaging techniques.
    Ayodele BA; Malekipour F; Pagel CN; Mackie EJ; Whitton RC
    J Anat; 2024 Jul; 245(1):58-69. PubMed ID: 38481117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis.
    Roberts BC; Solomon LB; Mercer G; Reynolds KJ; Thewlis D; Perilli E
    Osteoarthritis Cartilage; 2018 Apr; 26(4):547-556. PubMed ID: 29382604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone.
    Ulrich D; van Rietbergen B; Laib A; Rüegsegger P
    Bone; 1999 Jul; 25(1):55-60. PubMed ID: 10423022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Segond fracture occurs at the site of lowest sub-entheseal trabecular bone volume fraction on the tibial plateau.
    Mullins W; Jarvis GE; Oluboyede D; Skingle L; Poole K; Turmezei T; Brassett C
    J Anat; 2020 Dec; 237(6):1040-1048. PubMed ID: 32770847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The quantification of 3D-trabecular architecture of the fourth cervical vertebra using CT osteoabsorptiometry and micro-CT.
    Poilliot A; Gay-Dujak MH; Müller-Gerbl M
    J Orthop Surg Res; 2023 Apr; 18(1):297. PubMed ID: 37046305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur.
    Perilli E; Baleani M; Ohman C; Fognani R; Baruffaldi F; Viceconti M
    J Biomech; 2008; 41(2):438-46. PubMed ID: 17949726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance.
    Lambers FM; Bouman AR; Rimnac CM; Hernandez CJ
    PLoS One; 2013; 8(12):e83662. PubMed ID: 24386247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical Bone Morphological and Trabecular Bone Microarchitectural Changes in the Mandible and Femoral Neck of Ovariectomized Rats.
    Hsu PY; Tsai MT; Wang SP; Chen YJ; Wu J; Hsu JT
    PLoS One; 2016; 11(4):e0154367. PubMed ID: 27127909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage.
    Fazzalari NL; Forwood MR; Smith K; Manthey BA; Herreen P
    Bone; 1998 Apr; 22(4):381-8. PubMed ID: 9556139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.