These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21538545)

  • 61. How low-resolution structural data predict the conformational changes of a protein: a study on data-driven molecular dynamics simulations.
    Harada R; Shigeta Y
    Phys Chem Chem Phys; 2018 Jul; 20(26):17790-17798. PubMed ID: 29922770
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Formation of intermolecular and intramolecular hydrogen bonds in histidine-binding protein J of Salmonella typhimurium upon binding L-histidine. A proton nuclear magnetic resonance study.
    Buckel SD; Cottam PF; Simplaceanu V; Ho C
    J Mol Biol; 1989 Aug; 208(3):477-89. PubMed ID: 2552128
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular dynamics simulations of the thermal stability of tteRBP and ecRBP.
    Feng XL; Zhao X; Yu H; Sun TD; Huang XR
    J Biomol Struct Dyn; 2013 Oct; 31(10):1086-100. PubMed ID: 23025251
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Application of Markov State Models to simulate long timescale dynamics of biological macromolecules.
    Da LT; Sheong FK; Silva DA; Huang X
    Adv Exp Med Biol; 2014; 805():29-66. PubMed ID: 24446356
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Analysis of domain movements in glutamine-binding protein with simple models.
    Su JG; Jiao X; Sun TG; Li CH; Chen WZ; Wang CX
    Biophys J; 2007 Feb; 92(4):1326-35. PubMed ID: 17098801
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ligand binding and global adaptation of the GlnPQ substrate binding domain 2 revealed by molecular dynamics simulations.
    Kienlein M; Zacharias M
    Protein Sci; 2020 Dec; 29(12):2482-2494. PubMed ID: 33070437
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7-A resolution.
    Kang CH; Shin WC; Yamagata Y; Gokcen S; Ames GF; Kim SH
    J Biol Chem; 1991 Dec; 266(35):23893-9. PubMed ID: 1748660
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Structure and dynamics of Type III periplasmic proteins VcFhuD and VcHutB reveal molecular basis of their distinctive ligand binding properties.
    Agarwal S; Dey S; Ghosh B; Biswas M; Dasgupta J
    Sci Rep; 2017 Feb; 7():42812. PubMed ID: 28216648
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Interaction of arginine, lysine, and guanidine with surface residues of lysozyme: implication to protein stability.
    Shah D; Shaikh AR
    J Biomol Struct Dyn; 2016; 34(1):104-14. PubMed ID: 25730443
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Solution and crystal molecular dynamics simulation study of m4-cyanovirin-N mutants complexed with di-mannose.
    Vorontsov II; Miyashita O
    Biophys J; 2009 Nov; 97(9):2532-40. PubMed ID: 19883596
    [TBL] [Abstract][Full Text] [Related]  

  • 71. How arginine inhibits substrate-binding domain 2 elucidated using molecular dynamics simulations.
    Kienlein M; Zacharias M
    Protein Sci; 2024 Jul; 33(7):e5077. PubMed ID: 38888275
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds.
    Pflugrath JW; Quiocho FA
    Nature; 1985 Mar 21-27; 314(6008):257-60. PubMed ID: 3885043
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.
    Clifton BE; Jackson CJ
    Cell Chem Biol; 2016 Feb; 23(2):236-245. PubMed ID: 26853627
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation.
    Shah D; Li J; Shaikh AR; Rajagopalan R
    Biotechnol Prog; 2012; 28(1):223-31. PubMed ID: 21948347
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A new method for modeling large-scale rearrangements of protein domains.
    Maiorov V; Abagyan R
    Proteins; 1997 Mar; 27(3):410-24. PubMed ID: 9094743
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Subtle dynamics of holo glutamine binding protein revealed with a rigid paramagnetic probe.
    Liu Z; Gong Z; Guo DC; Zhang WP; Tang C
    Biochemistry; 2014 Mar; 53(9):1403-9. PubMed ID: 24555491
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A conserved mechanism of GABA binding and antagonism is revealed by structure-function analysis of the periplasmic binding protein Atu2422 in Agrobacterium tumefaciens.
    Planamente S; Vigouroux A; Mondy S; Nicaise M; Faure D; Moréra S
    J Biol Chem; 2010 Sep; 285(39):30294-303. PubMed ID: 20630861
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Understanding the role of arginine as an eluent in affinity chromatography via molecular computations.
    Shukla D; Zamolo L; Cavallotti C; Trout BL
    J Phys Chem B; 2011 Mar; 115(11):2645-54. PubMed ID: 21355601
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Kinetic mechanism and specificity of the arginine-ornithine antiporter of Lactococcus lactis.
    Driessen AJ; Molenaar D; Konings WN
    J Biol Chem; 1989 Jun; 264(18):10361-70. PubMed ID: 2499577
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Crystallographic and microcalorimetric analyses reveal the structural basis for high arginine specificity in the Salmonella enterica serovar Typhimurium periplasmic binding protein STM4351.
    Stamp AL; Owen P; El Omari K; Lockyer M; Lamb HK; Charles IG; Hawkins AR; Stammers DK
    Proteins; 2011 Jul; 79(7):2352-7. PubMed ID: 21560168
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.