BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21538547)

  • 1. Crystal structure of a metal-dependent phosphoesterase (YP_910028.1) from Bifidobacterium adolescentis: Computational prediction and experimental validation of phosphoesterase activity.
    Han GW; Ko J; Farr CL; Deller MC; Xu Q; Chiu HJ; Miller MD; Sefcikova J; Somarowthu S; Beuning PJ; Elsliger MA; Deacon AM; Godzik A; Lesley SA; Wilson IA; Ondrechen MJ
    Proteins; 2011 Jul; 79(7):2146-60. PubMed ID: 21538547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoesterase domains associated with DNA polymerases of diverse origins.
    Aravind L; Koonin EV
    Nucleic Acids Res; 1998 Aug; 26(16):3746-52. PubMed ID: 9685491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural role for the PHP domain in E. coli DNA polymerase III.
    Barros T; Guenther J; Kelch B; Anaya J; Prabhakar A; O'Donnell M; Kuriyan J; Lamers MH
    BMC Struct Biol; 2013 May; 13():8. PubMed ID: 23672456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Function Analysis of the Phosphoesterase Component of the Nucleic Acid End-Healing Enzyme
    Munir A; Shuman S
    J Bacteriol; 2019 Aug; 201(16):. PubMed ID: 31160396
    [No Abstract]   [Full Text] [Related]  

  • 5. Structure, Mechanism, and Substrate Profiles of the Trinuclear Metallophosphatases from the Amidohydrolase Superfamily.
    Ghodge SV; Raushel FM
    Methods Enzymol; 2018; 607():187-216. PubMed ID: 30149858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and mechanistic characterization of L-histidinol phosphate phosphatase from the polymerase and histidinol phosphatase family of proteins.
    Ghodge SV; Fedorov AA; Fedorov EV; Hillerich B; Seidel R; Almo SC; Raushel FM
    Biochemistry; 2013 Feb; 52(6):1101-12. PubMed ID: 23327428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of monofunctional histidinol phosphate phosphatase from Thermus thermophilus HB8.
    Omi R; Goto M; Miyahara I; Manzoku M; Ebihara A; Hirotsu K
    Biochemistry; 2007 Nov; 46(44):12618-27. PubMed ID: 17929834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases.
    Bailey S; Wing RA; Steitz TA
    Cell; 2006 Sep; 126(5):893-904. PubMed ID: 16959569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural snapshots of Escherichia coli histidinol phosphate phosphatase along the reaction pathway.
    Rangarajan ES; Proteau A; Wagner J; Hung MN; Matte A; Cygler M
    J Biol Chem; 2006 Dec; 281(49):37930-41. PubMed ID: 16966333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model for the catalytic domain of the proofreading epsilon subunit of Escherichia coli DNA polymerase III based on NMR structural data.
    DeRose EF; Li D; Darden T; Harvey S; Perrino FW; Schaaper RM; London RE
    Biochemistry; 2002 Jan; 41(1):94-110. PubMed ID: 11772007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit.
    Wieczorek A; McHenry CS
    J Biol Chem; 2006 May; 281(18):12561-7. PubMed ID: 16517598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel esterase subfamily with α/β-hydrolase fold suggested by structures of two bacterial enzymes homologous to L-homoserine O-acetyl transferases.
    Tölzer C; Pal S; Watzlawick H; Altenbuchner J; Niefind K
    FEBS Lett; 2016 Jan; 590(1):174-84. PubMed ID: 26787467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III.
    Lamers MH; Georgescu RE; Lee SG; O'Donnell M; Kuriyan J
    Cell; 2006 Sep; 126(5):881-92. PubMed ID: 16959568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and structural investigation of taurine:2-oxoglutarate aminotransferase from
    Li M; Wei Y; Yin J; Lin L; Zhou Y; Hua G; Cao P; Ang EL; Zhao H; Yuchi Z; Zhang Y
    Biochem J; 2019 Jun; 476(11):1605-1619. PubMed ID: 31088892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond.
    Kulis-Horn RK; Rückert C; Kalinowski J; Persicke M
    BMC Microbiol; 2017 Jul; 17(1):161. PubMed ID: 28720084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis.
    Sprogøe D; van den Broek LA; Mirza O; Kastrup JS; Voragen AG; Gajhede M; Skov LK
    Biochemistry; 2004 Feb; 43(5):1156-62. PubMed ID: 14756551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and enzymatic characterization of DR1281: A calcineurin-like phosphoesterase from Deinococcus radiodurans.
    Shin DH; Proudfoot M; Lim HJ; Choi IK; Yokota H; Yakunin AF; Kim R; Kim SH
    Proteins; 2008 Feb; 70(3):1000-9. PubMed ID: 17847097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of the acid sphingomyelinase phosphoesterase domain based on its remote structural homolog purple acid phosphatase.
    Seto M; Whitlow M; McCarrick MA; Srinivasan S; Zhu Y; Pagila R; Mintzer R; Light D; Johns A; Meurer-Ogden JA
    Protein Sci; 2004 Dec; 13(12):3172-86. PubMed ID: 15557261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3'-5' exonuclease activity.
    Nakane S; Nakagawa N; Kuramitsu S; Masui R
    Nucleic Acids Res; 2009 Apr; 37(6):2037-52. PubMed ID: 19211662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of bacterial LigD 3'-phosphoesterase unveils a DNA repair superfamily.
    Nair PA; Smith P; Shuman S
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):12822-7. PubMed ID: 20616014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.