BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 21538757)

  • 1. Transport of free and peptide-bound glycated amino acids: synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins.
    Hellwig M; Geissler S; Matthes R; Peto A; Silow C; Brandsch M; Henle T
    Chembiochem; 2011 May; 12(8):1270-9. PubMed ID: 21538757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of free and peptide-bound pyrraline at intestinal and renal epithelial cells.
    Hellwig M; Geissler S; Peto A; Knütter I; Brandsch M; Henle T
    J Agric Food Chem; 2009 Jul; 57(14):6474-80. PubMed ID: 19555106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems.
    Grunwald S; Krause R; Bruch M; Henle T; Brandsch M
    Br J Nutr; 2006 Jun; 95(6):1221-8. PubMed ID: 16768847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and intestinal transport of the iron chelator maltosine in free and dipeptide form.
    Geissler S; Hellwig M; Markwardt F; Henle T; Brandsch M
    Eur J Pharm Biopharm; 2011 May; 78(1):75-82. PubMed ID: 21216287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers.
    Nøhr MK; Hansen SH; Brodin B; Holm R; Nielsen CU
    Eur J Pharm Sci; 2014 Jan; 51():1-10. PubMed ID: 24008184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of Free and Dipeptide-Bound Glycated Amino Acids by Two Strains of Saccharomyces cerevisiae.
    Hellwig M; Börner M; Beer F; van Pée KH; Henle T
    Chembiochem; 2017 Feb; 18(3):266-275. PubMed ID: 27900834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conjugation of dipeptide to fluorescent dyes enhances its affinity for a dipeptide transporter (PEPT1) in human intestinal Caco-2 cells.
    Abe H; Satoh M; Miyauchi S; Shuto S; Matsuda A; Kamo N
    Bioconjug Chem; 1999; 10(1):24-31. PubMed ID: 9893960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basolateral glycylsarcosine (Gly-Sar) transport in Caco-2 cell monolayers is pH dependent.
    Berthelsen R; Nielsen CU; Brodin B
    J Pharm Pharmacol; 2013 Jul; 65(7):970-9. PubMed ID: 23738724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes.
    Inui K; Yamamoto M; Saito H
    J Pharmacol Exp Ther; 1992 Apr; 261(1):195-201. PubMed ID: 1560365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics.
    Cao F; Gao Y; Wang M; Fang L; Ping Q
    Mol Pharm; 2013 Apr; 10(4):1378-87. PubMed ID: 23339520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of the phosphonodipeptide alafosfalin by the H+/peptide cotransporters PEPT1 and PEPT2 in intestinal and renal epithelial cells.
    Neumann J; Bruch M; Gebauer S; Brandsch M
    Eur J Biochem; 2004 May; 271(10):2012-7. PubMed ID: 15128310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of the advanced glycation end products alanylpyrraline and pyrralylalanine by the human proton-coupled peptide transporter hPEPT1.
    Geissler S; Hellwig M; Zwarg M; Markwardt F; Henle T; Brandsch M
    J Agric Food Chem; 2010 Feb; 58(4):2543-7. PubMed ID: 20104847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free and Protein-Bound Maillard Reaction Products in Beer: Method Development and a Survey of Different Beer Types.
    Hellwig M; Witte S; Henle T
    J Agric Food Chem; 2016 Sep; 64(38):7234-43. PubMed ID: 27594145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of the dipeptide ester prodrugs of acyclovir with the intestinal oligopeptide transporter: competitive inhibition of glycylsarcosine transport in human intestinal cell line-Caco-2.
    Anand BS; Patel J; Mitra AK
    J Pharmacol Exp Ther; 2003 Feb; 304(2):781-91. PubMed ID: 12538834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEPT1-mediated uptake of dipeptides enhances the intestinal absorption of amino acids via transport system b(0,+).
    Wenzel U; Meissner B; Döring F; Daniel H
    J Cell Physiol; 2001 Feb; 186(2):251-9. PubMed ID: 11169462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct transport characteristics of basolateral peptide transporters between MDCK and Caco-2 cells.
    Sawada K; Terada T; Saito H; Inui K
    Pflugers Arch; 2001 Oct; 443(1):31-7. PubMed ID: 11692263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport characteristics of a novel peptide transporter 1 substrate, antihypotensive drug midodrine, and its amino acid derivatives.
    Tsuda M; Terada T; Irie M; Katsura T; Niida A; Tomita K; Fujii N; Inui K
    J Pharmacol Exp Ther; 2006 Jul; 318(1):455-60. PubMed ID: 16597710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivatives of melphalan designed to enhance drug accumulation in cancer cells.
    Kupczyk-Subotkowska L; Tamura K; Pal D; Sakaeda T; Siahaan TJ; Stella VJ; Borchardt RT
    J Drug Target; 1997; 4(6):359-70. PubMed ID: 9239576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bioactive dipeptide anserine is transported by human proton-coupled peptide transporters.
    Geissler S; Zwarg M; Knütter I; Markwardt F; Brandsch M
    FEBS J; 2010 Feb; 277(3):790-5. PubMed ID: 20067523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemoselective synthesis of peptides containing major advanced glycation end-products of lysine and arginine.
    Gruber P; Hofmann T
    J Pept Res; 2005 Sep; 66(3):111-24. PubMed ID: 16083438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.