These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 21538772)
1. Visual servoing for a US-guided therapeutic HIFU system by coagulated lesion tracking: a phantom study. Seo J; Koizumi N; Funamoto T; Sugita N; Yoshinaka K; Nomiya A; Homma Y; Matsumoto Y; Mitsuishi M Int J Med Robot; 2011 Jun; 7(2):237-47. PubMed ID: 21538772 [TBL] [Abstract][Full Text] [Related]
2. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound. Seo J; Koizumi N; Mitsuishi M; Sugita N Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 27995752 [TBL] [Abstract][Full Text] [Related]
3. Rapid motion correction in MR-guided high-intensity focused ultrasound heating using real-time ultrasound echo information. de Oliveira PL; de Senneville BD; Dragonu I; Moonen CT NMR Biomed; 2010 Nov; 23(9):1103-8. PubMed ID: 20669159 [TBL] [Abstract][Full Text] [Related]
4. 3-D real-time motion correction in high-intensity focused ultrasound therapy. Pernot M; Tanter M; Fink M Ultrasound Med Biol; 2004 Sep; 30(9):1239-49. PubMed ID: 15550328 [TBL] [Abstract][Full Text] [Related]
5. Robotized High Intensity Focused Ultrasound (HIFU) system for treatment of mobile organs using motion tracking by ultrasound imaging: An in vitro study. Chanel LA; Nageotte F; Vappou J; Luo J; Cuvillon L; de Mathelin M Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2571-5. PubMed ID: 26736817 [TBL] [Abstract][Full Text] [Related]
6. A framework for the correction of slow physiological drifts during MR-guided HIFU therapies: Proof of concept. Zachiu C; Denis de Senneville B; Moonen C; Ries M Med Phys; 2015 Jul; 42(7):4137-48. PubMed ID: 26133614 [TBL] [Abstract][Full Text] [Related]
7. Real-time 3D image-guided HIFU therapy. Ziadloo A; Vaezy S Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4459-62. PubMed ID: 19163704 [TBL] [Abstract][Full Text] [Related]
8. Real-time 3D ultrasound based motion tracking for the treatment of mobile organs with MR-guided high-intensity focused ultrasound. Bour P; Ozenne V; Marquet F; Denis de Senneville B; Dumont E; Quesson B Int J Hyperthermia; 2018 Dec; 34(8):1225-1235. PubMed ID: 29378441 [TBL] [Abstract][Full Text] [Related]
9. Extracorporeally induced ablation of renal tissue by high-intensity focused ultrasound. Häcker A; Michel MS; Marlinghaus E; Köhrmann KU; Alken P BJU Int; 2006 Apr; 97(4):779-85. PubMed ID: 16536773 [TBL] [Abstract][Full Text] [Related]
10. Laparoscopic high-intensity focused ultrasound for renal tumours: a proof of concept study. Ritchie RW; Leslie TA; Turner GD; Roberts IS; D'Urso L; Collura D; Demarchi A; Muto G; Sullivan ME BJU Int; 2011 Apr; 107(8):1290-6. PubMed ID: 21929519 [TBL] [Abstract][Full Text] [Related]
11. Spectrally selective pencil-beam navigator for motion compensation of MR-guided high-intensity focused ultrasound therapy of abdominal organs. Köhler MO; Denis de Senneville B; Quesson B; Moonen CT; Ries M Magn Reson Med; 2011 Jul; 66(1):102-11. PubMed ID: 21305602 [TBL] [Abstract][Full Text] [Related]
12. An autotuning respiration compensation system based on ultrasound image tracking. Kuo CC; Chuang HC; Teng KT; Hsu HY; Tien DC; Wu CJ; Jeng SC; Chiou JF J Xray Sci Technol; 2016 Nov; 24(6):875-892. PubMed ID: 27612051 [TBL] [Abstract][Full Text] [Related]
13. Self-Scanned HIFU Ablation of Moving Tissue Using Real-Time Hybrid US-MR Imaging. Lorton O; Guillemin PC; Mori N; Crowe LA; Boudabbous S; Terraz S; Becker CD; Cattin P; Salomir R; Gui L IEEE Trans Biomed Eng; 2019 Aug; 66(8):2182-2191. PubMed ID: 30530308 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional ultrasound image-guided robotic system for accurate microwave coagulation of malignant liver tumours. Xu J; Jia ZZ; Song ZJ; Yang XD; Chen K; Liang P Int J Med Robot; 2010 Sep; 6(3):256-68. PubMed ID: 20564429 [TBL] [Abstract][Full Text] [Related]
15. Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction. Marquet F; Aubry JF; Pernot M; Fink M; Tanter M Phys Med Biol; 2011 Nov; 56(22):7061-80. PubMed ID: 22016152 [TBL] [Abstract][Full Text] [Related]
16. Respiration-induced movement correlation for synchronous noninvasive renal cancer surgery. Abhilash RH; Chauhan S IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1478-86. PubMed ID: 22828843 [TBL] [Abstract][Full Text] [Related]
17. A novel approach to energy ablative therapy of small renal tumours: laparoscopic high-intensity focused ultrasound. Klingler HC; Susani M; Seip R; Mauermann J; Sanghvi N; Marberger MJ Eur Urol; 2008 Apr; 53(4):810-6; discussion 817-8. PubMed ID: 18069120 [TBL] [Abstract][Full Text] [Related]
18. Ultrasonography-based 2D motion-compensated HIFU sonication integrated with reference-free MR temperature monitoring: a feasibility study ex vivo. Auboiroux V; Petrusca L; Viallon M; Goget T; Becker CD; Salomir R Phys Med Biol; 2012 May; 57(10):N159-71. PubMed ID: 22517112 [TBL] [Abstract][Full Text] [Related]
19. Differential ultrasonic imaging for the characterization of lesions induced by high intensity focused ultrasound. Zhong H; Wan M; Jiang Y; Wang S Ultrasonics; 2006 Dec; 44 Suppl 1():e285-8. PubMed ID: 16844167 [TBL] [Abstract][Full Text] [Related]
20. Usefulness of US-CT 3D dual imaging for the planning and monitoring of hepatocellular carcinoma treatment using HIFU. Fukuda H; Numata K; Nozaki A; Morimoto M; Kondo M; Tanaka K; Maeda S; Yamagata J; Ohto M; Ito R; Sakamoto A; Zhu H; Wang ZB Eur J Radiol; 2011 Dec; 80(3):e306-10. PubMed ID: 21306847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]