These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21538897)

  • 1. Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes.
    Castillo V; Graña-Montes R; Sabate R; Ventura S
    Biotechnol J; 2011 Jun; 6(6):674-85. PubMed ID: 21538897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation propensity of the human proteome.
    Monsellier E; Ramazzotti M; Taddei N; Chiti F
    PLoS Comput Biol; 2008 Oct; 4(10):e1000199. PubMed ID: 18927604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid assessment of contact-dependent secondary structure propensity: relevance to amyloidogenic sequences.
    Yoon S; Welsh WJ
    Proteins; 2005 Jul; 60(1):110-7. PubMed ID: 15849755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein aggregation and amyloid fibril formation prediction software from primary sequence: towards controlling the formation of bacterial inclusion bodies.
    Hamodrakas SJ
    FEBS J; 2011 Jul; 278(14):2428-35. PubMed ID: 21569208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of the S. cerevisiae proteome reveals the function and cellular localization of the least and most amyloidogenic proteins.
    Tartaglia GG; Caflisch A
    Proteins; 2007 Jul; 68(1):273-8. PubMed ID: 17407164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence.
    Garbuzynskiy SO; Lobanov MY; Galzitskaya OV
    Bioinformatics; 2010 Feb; 26(3):326-32. PubMed ID: 20019059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of aggregation-prone regions in structured proteins.
    Tartaglia GG; Pawar AP; Campioni S; Dobson CM; Chiti F; Vendruscolo M
    J Mol Biol; 2008 Jul; 380(2):425-36. PubMed ID: 18514226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meta-structure correlation in protein space unveils different selection rules for folded and intrinsically disordered proteins.
    Naranjo Y; Pons M; Konrat R
    Mol Biosyst; 2012 Jan; 8(1):411-6. PubMed ID: 22108787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consensus prediction of amyloidogenic determinants in amyloid fibril-forming proteins.
    Hamodrakas SJ; Liappa C; Iconomidou VA
    Int J Biol Macromol; 2007 Aug; 41(3):295-300. PubMed ID: 17477968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-strand perturbation and amyloid propensity in beta-2 microglobulin.
    Azinas S; Colombo M; Barbiroli A; Santambrogio C; Giorgetti S; Raimondi S; Bonomi F; Grandori R; Bellotti V; Ricagno S; Bolognesi M
    FEBS J; 2011 Jul; 278(13):2349-58. PubMed ID: 21569201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides.
    Conchillo-Solé O; de Groot NS; Avilés FX; Vendrell J; Daura X; Ventura S
    BMC Bioinformatics; 2007 Feb; 8():65. PubMed ID: 17324296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the relationship between the primary structure of proteins and their amyloidogenic propensity: clues from inclusion body formation.
    Idicula-Thomas S; Balaji PV
    Protein Eng Des Sel; 2005 Apr; 18(4):175-80. PubMed ID: 15849216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How evolutionary pressure against protein aggregation shaped chaperone specificity.
    Rousseau F; Serrano L; Schymkowitz JW
    J Mol Biol; 2006 Feb; 355(5):1037-47. PubMed ID: 16359707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity.
    Kapurniotu A; Schmauder A; Tenidis K
    J Mol Biol; 2002 Jan; 315(3):339-50. PubMed ID: 11786016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AGGRESCAN: method, application, and perspectives for drug design.
    de Groot NS; Castillo V; Graña-Montes R; Ventura S
    Methods Mol Biol; 2012; 819():199-220. PubMed ID: 22183539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins.
    Linding R; Schymkowitz J; Rousseau F; Diella F; Serrano L
    J Mol Biol; 2004 Sep; 342(1):345-53. PubMed ID: 15313629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of model systems for amyloid formation: lessons for prediction and inhibition.
    Pastor MT; Esteras-Chopo A; López de la Paz M
    Curr Opin Struct Biol; 2005 Feb; 15(1):57-63. PubMed ID: 15718134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins.
    Fernandez-Escamilla AM; Rousseau F; Schymkowitz J; Serrano L
    Nat Biotechnol; 2004 Oct; 22(10):1302-6. PubMed ID: 15361882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein sequences encode safeguards against aggregation.
    Reumers J; Maurer-Stroh S; Schymkowitz J; Rousseau F
    Hum Mutat; 2009 Mar; 30(3):431-7. PubMed ID: 19156839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial docking approach for structure prediction of large proteins and multi-molecular assemblies.
    Inbar Y; Benyamini H; Nussinov R; Wolfson HJ
    Phys Biol; 2005 Nov; 2(4):S156-65. PubMed ID: 16280621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.