BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 21539223)

  • 21. Biogenic FeS promotes dechlorination and thus de-cytotoxity of trichloroethylene.
    Nie Z; Wang N; Xia X; Xia J; Liu H; Zhou Y; Deng Y; Xue Z
    Bioprocess Biosyst Eng; 2020 Oct; 43(10):1791-1800. PubMed ID: 32424693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis.
    De Windt W; Boon N; Van den Bulcke J; Rubberecht L; Prata F; Mast J; Hennebel T; Verstraete W
    Antonie Van Leeuwenhoek; 2006 Nov; 90(4):377-89. PubMed ID: 17033880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions.
    De Corte S; Sabbe T; Hennebel T; Vanhaecke L; De Gusseme B; Verstraete W; Boon N
    Water Res; 2012 May; 46(8):2718-26. PubMed ID: 22406286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation.
    Alpaslan Kocamemi B; Ceçen F
    Biodegradation; 2007 Feb; 18(1):71-81. PubMed ID: 16467966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic dechlorination of diclofenac by biogenic palladium in a microbial electrolysis cell.
    De Gusseme B; Soetaert M; Hennebel T; Vanhaecke L; Boon N; Verstraete W
    Microb Biotechnol; 2012 May; 5(3):396-402. PubMed ID: 22221490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles.
    Barnes RJ; Riba O; Gardner MN; Singer AC; Jackman SA; Thompson IP
    Chemosphere; 2010 Jul; 80(5):554-62. PubMed ID: 20451949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reductive dechlorination at high aqueous TCE concentrations.
    Haest PJ; Ruymen S; Springael D; Smolders E
    Commun Agric Appl Biol Sci; 2006; 71(1):165-9. PubMed ID: 17191498
    [No Abstract]   [Full Text] [Related]  

  • 28. A stable synergistic microbial consortium for simultaneous azo dye removal and bioelectricity generation.
    Wang VB; Chua SL; Cai Z; Sivakumar K; Zhang Q; Kjelleberg S; Cao B; Loo SC; Yang L
    Bioresour Technol; 2014 Mar; 155():71-6. PubMed ID: 24434696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-enzymatic palladium recovery on microbial and synthetic surfaces.
    Rotaru AE; Jiang W; Finster K; Skrydstrup T; Meyer RL
    Biotechnol Bioeng; 2012 Aug; 109(8):1889-97. PubMed ID: 22422611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cometabolic microbial degradation of trichloroethylene in the presence of toluene.
    Sui H; Li XG; Xu SM
    J Environ Sci (China); 2004; 16(3):487-9. PubMed ID: 15272729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shewanella--the environmentally versatile genome.
    Tiedje JM
    Nat Biotechnol; 2002 Nov; 20(11):1093-4. PubMed ID: 12410251
    [No Abstract]   [Full Text] [Related]  

  • 32. Hydrogen production using single-chamber membrane-free microbial electrolysis cells.
    Hu H; Fan Y; Liu H
    Water Res; 2008 Sep; 42(15):4172-8. PubMed ID: 18718624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical dechlorination of 2,4-dichlorophenol in aqueous solution on palladium-loaded meshed titanium electrode.
    Sun ZR; Gao M; Peng YZ; Hu X
    Water Sci Technol; 2011; 63(2):199-205. PubMed ID: 21252420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trichloroethylene (TCE) removal in a single pulse suspension bioreactor.
    Volcík V; Hoffmann J; Růzicka J; Sergejevová M
    J Environ Manage; 2005 Mar; 74(4):293-304. PubMed ID: 15737454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III).
    K'Owino IO; Omole MA; Sadik OA
    J Environ Monit; 2007 Jul; 9(7):657-65. PubMed ID: 17607385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitigation of the effect of catholyte contamination in microbial fuel cells using a wicking air cathode.
    Sund CJ; Wong MS; Sumner JJ
    Biosens Bioelectron; 2009 Jun; 24(10):3144-7. PubMed ID: 19359159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells.
    Foley JM; Rozendal RA; Hertle CK; Lant PA; Rabaey K
    Environ Sci Technol; 2010 May; 44(9):3629-37. PubMed ID: 20356090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An innovative miniature microbial fuel cell fabricated using photolithography.
    Chen YP; Zhao Y; Qiu KQ; Chu J; Lu R; Sun M; Liu XW; Sheng GP; Yu HQ; Chen J; Li WJ; Liu G; Tian YC; Xiong Y
    Biosens Bioelectron; 2011 Feb; 26(6):2841-6. PubMed ID: 21169010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells.
    Ramasamy RP; Gadhamshetty V; Nadeau LJ; Johnson GR
    Biotechnol Bioeng; 2009 Dec; 104(5):882-91. PubMed ID: 19585525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles.
    Wu L; Ritchie SM
    Chemosphere; 2006 Apr; 63(2):285-92. PubMed ID: 16226292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.