BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 21539223)

  • 41. Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures.
    Watson VJ; Logan BE
    Biotechnol Bioeng; 2010 Feb; 105(3):489-98. PubMed ID: 19787640
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of flavin electron shuttles in microbial fuel cells current production.
    Velasquez-Orta SB; Head IM; Curtis TP; Scott K; Lloyd JR; von Canstein H
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1373-81. PubMed ID: 19697021
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling of Sustainable Base Production by Microbial Electrolysis Cell.
    Blatter M; Sugnaux M; Comninellis C; Nealson K; Fischer F
    ChemSusChem; 2016 Jul; 9(13):1570-4. PubMed ID: 27265318
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of diatrizoate with catalytically active membranes incorporating microbially produced palladium nanoparticles.
    Hennebel T; De Corte S; Vanhaecke L; Vanherck K; Forrez I; De Gusseme B; Verhagen P; Verbeken K; Van der Bruggen B; Vankelecom I; Boon N; Verstraete W
    Water Res; 2010 Mar; 44(5):1498-506. PubMed ID: 19939433
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomass-supported palladium catalysts on Desulfovibrio desulfuricans and Rhodobacter sphaeroides.
    Redwood MD; Deplanche K; Baxter-Plant VS; Macaskie LE
    Biotechnol Bioeng; 2008 Apr; 99(5):1045-54. PubMed ID: 17969153
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functionalized poly(ethylene glycol)-stabilized water-soluble palladium nanoparticles: property/activity relationship for the aerobic alcohol oxidation in water.
    Feng B; Hou Z; Yang H; Wang X; Hu Y; Li H; Qiao Y; Zhao X; Huang Q
    Langmuir; 2010 Feb; 26(4):2505-13. PubMed ID: 20039597
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Natural attenuation of trichloroethylene in fractured shale bedrock.
    Lenczewski M; Jardine P; McKay L; Layton A
    J Contam Hydrol; 2003 Jul; 64(3-4):151-68. PubMed ID: 12814878
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes.
    Li SL; Freguia S; Liu SM; Cheng SS; Tsujimura S; Shirai O; Kano K
    Biosens Bioelectron; 2010 Aug; 25(12):2651-6. PubMed ID: 20494569
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.
    Ajayi FF; Kim KY; Chae KJ; Choi MJ; Chang IS; Kim IS
    Photochem Photobiol Sci; 2010 Mar; 9(3):349-56. PubMed ID: 20221461
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Standardized microbial fuel cell anodes of silica-immobilized Shewanella oneidensis.
    Luckarift HR; Sizemore SR; Roy J; Lau C; Gupta G; Atanassov P; Johnson GR
    Chem Commun (Camb); 2010 Sep; 46(33):6048-50. PubMed ID: 20574569
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microbial perchlorate reduction: rocket-fueled metabolism.
    Coates JD; Achenbach LA
    Nat Rev Microbiol; 2004 Jul; 2(7):569-80. PubMed ID: 15197392
    [No Abstract]   [Full Text] [Related]  

  • 53. Biocatalytic dechlorination of lindane by nano-scale particles of Pd(0) deposited on Shewanella oneidensis.
    Mertens B; Blothe C; Windey K; De Windt W; Verstraete W
    Chemosphere; 2007 Jan; 66(1):99-105. PubMed ID: 16797673
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantifying the effects of fumarate on in situ reductive dechlorination rates.
    Hageman KJ; Field JA; Istok JD; Semprini L
    J Contam Hydrol; 2004 Dec; 75(3-4):281-96. PubMed ID: 15610903
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Challenges in microbial fuel cell development and operation.
    Kim BH; Chang IS; Gadd GM
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):485-94. PubMed ID: 17593364
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stimulative mineralization of p-fluoronitrobenzene in biocathode microbial electrolysis cell with an oxygen-limited environment.
    Shen D; Zhang X; Feng H; Zhang K; Wang K; Long Y; Wang M; Wang Y
    Bioresour Technol; 2014 Nov; 172():104-111. PubMed ID: 25247250
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanoaggregates of a pentacenequinone derivative as reactors for the preparation of palladium nanoparticles.
    Bhalla V; Gupta A; Kumar M
    Chem Commun (Camb); 2012 Dec; 48(97):11862-4. PubMed ID: 23042509
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Breathing with chlorinated solvents.
    McCarty PL
    Science; 1997 Jun; 276(5318):1521-2. PubMed ID: 9190688
    [No Abstract]   [Full Text] [Related]  

  • 59. Biodegradation of pollutants by exoelectrogenic bacteria is not always performed extracellularly.
    Jeuken LJC
    Environ Microbiol; 2022 Apr; 24(4):1835-1837. PubMed ID: 35199430
    [No Abstract]   [Full Text] [Related]  

  • 60. Zinc oxide and indium tin oxide thin films for the growth and characterization of Shewanella loihica PV-4 electroactive biofilms.
    Connolly J; Jain A; Pastorella G; Krishnamurthy S; Mosnier JP; Marsili E
    Virulence; 2011; 2(5):479-82. PubMed ID: 21921690
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.