BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21539330)

  • 1. Electronic structure of cofactor-substrate reactant complex involved in the methyl transfer reaction catalyzed by cobalamin-dependent methionine synthase.
    Kumar N; Jaworska M; Lodowski P; Kumar M; Kozlowski PM
    J Phys Chem B; 2011 May; 115(20):6722-31. PubMed ID: 21539330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive cleavage mechanism of Co-C bond in cobalamin-dependent methionine synthase.
    Alfonso-Prieto M; Biarnés X; Kumar M; Rovira C; Kozlowski PM
    J Phys Chem B; 2010 Oct; 114(40):12965-71. PubMed ID: 20853870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How is a co-methyl intermediate formed in the reaction of cobalamin-dependent methionine synthase? Theoretical evidence for a two-step methyl cation transfer mechanism.
    Chen SL; Blomberg MR; Siegbahn PE
    J Phys Chem B; 2011 Apr; 115(14):4066-77. PubMed ID: 21417249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc-homocysteine binding in cobalamin-dependent methionine synthase and its role in the substrate activation: DFT, ONIOM, and QM/MM molecular dynamics studies.
    Abdel-Azeim S; Li X; Chung LW; Morokuma K
    J Comput Chem; 2011 Nov; 32(15):3154-67. PubMed ID: 21837727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodissociation of Co-C bond in methyl- and ethylcobalamin: an insight from TD-DFT calculations.
    Lodowski P; Jaworska M; Andruniów T; Kumar M; Kozlowski PM
    J Phys Chem B; 2009 May; 113(19):6898-909. PubMed ID: 19374399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive elimination pathway for homocysteine to methionine conversion in cobalamin-dependent methionine synthase.
    Kozlowski PM; Kamachi T; Kumar M; Yoshizawa K
    J Biol Inorg Chem; 2012 Apr; 17(4):611-9. PubMed ID: 22358333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights for formation of an organometallic Co-C bond in the methyl transfer reaction catalyzed by methionine synthase.
    Kumar N; Kozlowski PM
    J Phys Chem B; 2013 Dec; 117(50):16044-57. PubMed ID: 24164324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamin cofactor.
    Hoover DM; Jarrett JT; Sands RH; Dunham WR; Ludwig ML; Matthews RG
    Biochemistry; 1997 Jan; 36(1):127-38. PubMed ID: 8993326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitation of rate enhancements attained by the binding of cobalamin to methionine synthase.
    Bandarian V; Matthews RG
    Biochemistry; 2001 Apr; 40(16):5056-64. PubMed ID: 11305922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine.
    Goulding CW; Postigo D; Matthews RG
    Biochemistry; 1997 Jul; 36(26):8082-91. PubMed ID: 9201956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-cobalt bond distance and bond cleavage in one-electron reduced methylcobalamin: a failure of the conventional DFT method.
    Spataru T; Birke RL
    J Phys Chem A; 2006 Jul; 110(28):8599-604. PubMed ID: 16836419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivation of methionine synthase from Thermotoga maritima (TM0268) requires the downstream gene product TM0269.
    Huang S; Romanchuk G; Pattridge K; Lesley SA; Wilson IA; Matthews RG; Ludwig M
    Protein Sci; 2007 Aug; 16(8):1588-95. PubMed ID: 17656578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cobalamin-dependent methionine synthase from Escherichia coli: involvement of zinc in homocysteine activation.
    Goulding CW; Matthews RG
    Biochemistry; 1997 Dec; 36(50):15749-57. PubMed ID: 9398304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in protonation associated with substrate binding and Cob(I)alamin formation in cobalamin-dependent methionine synthase.
    Jarrett JT; Choi CY; Matthews RG
    Biochemistry; 1997 Dec; 36(50):15739-48. PubMed ID: 9398303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the photo-induced activation of CoC bond in methylcobalamin-dependent methionine synthase.
    Ghosh AP; Mamun AA; Lodowski P; Jaworska M; Kozlowski PM
    J Photochem Photobiol B; 2018 Dec; 189():306-317. PubMed ID: 30447559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine synthase exists in two distinct conformations that differ in reactivity toward methyltetrahydrofolate, adenosylmethionine, and flavodoxin.
    Jarrett JT; Huang S; Matthews RG
    Biochemistry; 1998 Apr; 37(16):5372-82. PubMed ID: 9548919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure of the S1 state in methylcobalamin: insight from CASSCF/MC-XQDPT2, EOM-CCSD, and TD-DFT calculations.
    Kornobis K; Kumar N; Lodowski P; Jaworska M; Piecuch P; Lutz JJ; Wong BM; Kozlowski PM
    J Comput Chem; 2013 May; 34(12):987-1004. PubMed ID: 23335227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase.
    Evans JC; Huddler DP; Hilgers MT; Romanchuk G; Matthews RG; Ludwig ML
    Proc Natl Acad Sci U S A; 2004 Mar; 101(11):3729-36. PubMed ID: 14752199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive cleavage mechanism of methylcobalamin: elementary steps of Co-C bond breaking.
    Kozlowski PM; Kuta J; Galezowski W
    J Phys Chem B; 2007 Jul; 111(26):7638-45. PubMed ID: 17567060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic study of the cobalamin-dependent methionine synthase in the activation conformation: effects of the Y1139 residue and S-adenosylmethionine on the B12 cofactor.
    Liptak MD; Datta S; Matthews RG; Brunold TC
    J Am Chem Soc; 2008 Dec; 130(48):16374-81. PubMed ID: 19006389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.