BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21539398)

  • 1. DNP by thermal mixing under optimized conditions yields >60,000-fold enhancement of 89Y NMR signal.
    Lumata L; Jindal AK; Merritt ME; Malloy CR; Sherry AD; Kovacs Z
    J Am Chem Soc; 2011 Jun; 133(22):8673-80. PubMed ID: 21539398
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Niedbalski P; Parish C; Wang Q; Kiswandhi A; Hayati Z; Song L; Lumata L
    J Phys Chem A; 2017 Jul; 121(27):5127-5135. PubMed ID: 28631929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Ho(3+)-doping on (13)C dynamic nuclear polarization using trityl OX063 free radical.
    Kiswandhi A; Niedbalski P; Parish C; Kaur P; Martins A; Fidelino L; Khemtong C; Song L; Sherry AD; Lumata L
    Phys Chem Chem Phys; 2016 Aug; 18(31):21351-9. PubMed ID: 27424954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Gd3+ on DNP of [1-13C]pyruvate doped with trityl OX063, BDPA, or 4-oxo-TEMPO.
    Lumata L; Merritt ME; Malloy CR; Sherry AD; Kovacs Z
    J Phys Chem A; 2012 May; 116(21):5129-38. PubMed ID: 22571288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions.
    Corzilius B; Andreas LB; Smith AA; Ni QZ; Griffin RG
    J Magn Reson; 2014 Mar; 240():113-23. PubMed ID: 24394190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperpolarized
    Wang Q; Parish C; Niedbalski P; Ratnakar J; Kovacs Z; Lumata L
    J Magn Reson; 2020 Nov; 320():106837. PubMed ID: 33039915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution DNP-NMR spectroscopy using galvinoxyl as a polarizing agent.
    Lumata LL; Merritt ME; Malloy CR; Sherry AD; van Tol J; Song L; Kovacs Z
    J Magn Reson; 2013 Feb; 227():14-9. PubMed ID: 23246650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron spin resonance studies of trityl OX063 at a concentration optimal for DNP.
    Lumata L; Kovacs Z; Sherry AD; Malloy C; Hill S; van Tol J; Yu L; Song L; Merritt ME
    Phys Chem Chem Phys; 2013 Jun; 15(24):9800-7. PubMed ID: 23676994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency dynamic nuclear polarization in the nuclear rotating frame.
    Farrar CT; Hall DA; Gerfen GJ; Rosay M; Ardenkjaer-Larsen JH; Griffin RG
    J Magn Reson; 2000 May; 144(1):134-41. PubMed ID: 10783283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of Gd on trityl-based dynamic nuclear polarisation in solids.
    Ravera E; Shimon D; Feintuch A; Goldfarb D; Vega S; Flori A; Luchinat C; Menichetti L; Parigi G
    Phys Chem Chem Phys; 2015 Oct; 17(40):26969-78. PubMed ID: 26403358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR of insensitive nuclei enhanced by dynamic nuclear polarization.
    MiƩville P; Jannin S; Helm L; Bodenhausen G
    Chimia (Aarau); 2011; 65(4):260-3. PubMed ID: 21678775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heisenberg spin exchange effects of nitroxide radicals on Overhauser dynamic nuclear polarization in the low field limit at 1.5mT.
    Lingwood MD; Ivanov IA; Cote AR; Han S
    J Magn Reson; 2010 May; 204(1):56-63. PubMed ID: 20188611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Efficiency of
    Niedbalski P; Parish CR; Wang Q; Hayati Z; Song L; Cleveland ZI; Lumata L
    J Phys Chem C Nanomater Interfaces; 2017 Sep; 121(35):19505-19511. PubMed ID: 31768206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source.
    Thurber KR; Yau WM; Tycko R
    J Magn Reson; 2010 Jun; 204(2):303-13. PubMed ID: 20392658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution-state dynamic nuclear polarization at high magnetic field.
    Loening NM; Rosay M; Weis V; Griffin RG
    J Am Chem Soc; 2002 Jul; 124(30):8808-9. PubMed ID: 12137529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and
    Kiswandhi A; Niedbalski P; Parish C; Ferguson S; Taylor D; McDonald G; Lumata L
    Magn Reson Chem; 2017 Sep; 55(9):828-836. PubMed ID: 28407455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of Ho
    Khattri RB; Sirusi AA; Suh EH; Kovacs Z; Merritt ME
    Phys Chem Chem Phys; 2019 Aug; 21(34):18629-18635. PubMed ID: 31414686
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Radaelli A; Yoshihara HAI; Nonaka H; Sando S; Ardenkjaer-Larsen JH; Gruetter R; Capozzi A
    J Phys Chem Lett; 2020 Aug; 11(16):6873-6879. PubMed ID: 32787205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of
    Niedbalski P; Parish C; Kiswandhi A; Kovacs Z; Lumata L
    J Phys Chem A; 2017 May; 121(17):3227-3233. PubMed ID: 28422500
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.