These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21539402)

  • 1. Method for patterning various nanomaterials: electrochemical deposition of patterned Ni thin films and their utilization as a strippable mask.
    Ogihara H; Fukasawa M; Saji T
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):2108-11. PubMed ID: 21539402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step fabrication of nanostructured Ni film with lotus effect from deep eutectic solvent.
    Gu C; Tu J
    Langmuir; 2011 Aug; 27(16):10132-40. PubMed ID: 21739965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical growth of nickel hollow nanostructures on copper substrates.
    Li GR; Kay LG; Liu GK; Tong YX
    J Phys Chem B; 2005 Dec; 109(49):23300-3. PubMed ID: 16375297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing.
    Vairavapandian D; Vichchulada P; Lay MD
    Anal Chim Acta; 2008 Sep; 626(2):119-29. PubMed ID: 18790113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical patterning of transparent single-walled carbon nanotube films on plastic substrates.
    Han KN; Li CA; Han B; Bui MP; Pham XH; Choo J; Bachman M; Li GP; Seong GH
    Langmuir; 2010 Jun; 26(11):9136-41. PubMed ID: 20235587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles.
    Salimi A; Noorbakhash A; Sharifi E; Semnani A
    Biosens Bioelectron; 2008 Dec; 24(4):798-804. PubMed ID: 18692385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.
    Kimura M; Yamagiwa H; Asakawa D; Noguchi M; Kurashina T; Fukawa T; Shirai H
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3714-7. PubMed ID: 21069972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.
    Xiang C; Kung SC; Taggart DK; Yang F; Thompson MA; Güell AG; Yang Y; Penner RM
    ACS Nano; 2008 Sep; 2(9):1939-49. PubMed ID: 19206435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel oxide nanotubes: synthesis and electrochemical performance for use in lithium ion batteries.
    Needham SA; Wang GX; Liu HK; Yang L
    J Nanosci Nanotechnol; 2006 Jan; 6(1):77-81. PubMed ID: 16573073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterned tailored hydrophobic films designed by synergy effect of electrochemical deposition and chemical deposition.
    Yu Q; Zeng Z; Zhao W; Li H; Wu X; Xue Q
    Chem Commun (Camb); 2013 Mar; 49(24):2424-6. PubMed ID: 23412136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoveneers: an electrochemical approach to synthesizing conductive layered nanostructures.
    Xian X; Jiao L; Xue T; Wu Z; Liu Z
    ACS Nano; 2011 May; 5(5):4000-6. PubMed ID: 21473604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of electrodeposited single-walled carbon nanotube films.
    Kim SK; Choi HY; Lee HJ; Lee H
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3614-8. PubMed ID: 17252822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-active nickel in carbon nanotubes and its direct determination.
    Ambrosi A; Pumera M
    Chemistry; 2012 Mar; 18(11):3338-44. PubMed ID: 22307929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of conductivity and electrochemical doping on the reduction of methemoglobin immobilized in nanoparticulate TiO2 films.
    Milsom EV; Dash HA; Jenkins TA; Opallo M; Marken F
    Bioelectrochemistry; 2007 May; 70(2):221-7. PubMed ID: 17056301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films.
    Yang SB; Kong BS; Jung DH; Baek YK; Han CS; Oh SK; Jung HT
    Nanoscale; 2011 Apr; 3(4):1361-73. PubMed ID: 21359350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterial-based electrochemical DNA sensing strategies.
    Erdem A
    Talanta; 2007 Dec; 74(3):318-25. PubMed ID: 18371645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors.
    Wang Y; Zhitomirsky I
    Langmuir; 2009 Sep; 25(17):9684-9. PubMed ID: 19449813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to evaluate the tensile strength and stress-strain relationship of carbon nanofibers, carbon nanotubes, and C-chains.
    Márquez-Lucero A; Gomez JA; Caudillo R; Miki-Yoshida M; José-Yacaman M
    Small; 2005 Jun; 1(6):640-4. PubMed ID: 17193500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective atomic layer deposition of metal oxide thin films on patterned self-assembled monolayers formed by microcontact printing.
    Lee BH; Sung MM
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3758-64. PubMed ID: 18047053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the role of Au in improving catalytic activity of Ni nanoparticles for the formation of one-dimensional carbon nanostructures.
    Sharma R; Chee SW; Herzing A; Miranda R; Rez P
    Nano Lett; 2011 Jun; 11(6):2464-71. PubMed ID: 21604794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.