BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21539707)

  • 1. Determination of the membrane topology of Arv1 and the requirement of the ER luminal region for Arv1 function in Saccharomyces cerevisiae.
    Villasmil ML; Nickels JT
    FEMS Yeast Res; 2011 Sep; 11(6):524-7. PubMed ID: 21539707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization, membrane association and identification of amino acids essential for the function of Alg11 from Saccharomyces cerevisiae, an alpha1,2-mannosyltransferase catalysing two sequential glycosylation steps in the formation of the lipid-linked core oligosaccharide.
    Absmanner B; Schmeiser V; Kämpf M; Lehle L
    Biochem J; 2010 Feb; 426(2):205-17. PubMed ID: 19929855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast cells lacking the ARV1 gene harbor defects in sphingolipid metabolism. Complementation by human ARV1.
    Swain E; Stukey J; McDonough V; Germann M; Liu Y; Sturley SL; Nickels JT
    J Biol Chem; 2002 Sep; 277(39):36152-60. PubMed ID: 12145310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold-sensitive phenotypes of a yeast null mutant of ARV1 support its role as a GPI flippase.
    Okai H; Ikema R; Nakamura H; Kato M; Araki M; Mizuno A; Ikeda A; Renbaum P; Segel R; Funato K
    FEBS Lett; 2020 Aug; 594(15):2431-2439. PubMed ID: 32449190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arv1 regulates PM and ER membrane structure and homeostasis but is dispensable for intracellular sterol transport.
    Georgiev AG; Johansen J; Ramanathan VD; Sere YY; Beh CT; Menon AK
    Traffic; 2013 Aug; 14(8):912-21. PubMed ID: 23668914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The putative lipid transporter, Arv1, is required for activating pheromone-induced MAP kinase signaling in Saccharomyces cerevisiae.
    Villasmil ML; Ansbach A; Nickels JT
    Genetics; 2011 Feb; 187(2):455-65. PubMed ID: 21098723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Der1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins.
    Hitt R; Wolf DH
    FEMS Yeast Res; 2004 May; 4(7):721-9. PubMed ID: 15093775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicopy suppressors of the sly1 temperature-sensitive mutation in the ER-Golgi vesicular transport in Saccharomyces cerevisiae.
    Kosodo Y; Imai K; Hirata A; Noda Y; Takatsuki A; Adachi H; Yoda K
    Yeast; 2001 Aug; 18(11):1003-14. PubMed ID: 11481671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential ER exit in yeast and mammalian cells.
    Watanabe R; Riezman H
    Curr Opin Cell Biol; 2004 Aug; 16(4):350-5. PubMed ID: 15261666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ER biogenesis: self-assembly of tubular topology by protein hairpins.
    Shnyrova A; Frolov VA; Zimmerberg J
    Curr Biol; 2008 Jun; 18(11):R474-6. PubMed ID: 18522819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Rer1 is localized to the Golgi apparatus and complements the deletion of the homologous Rer1 protein of Saccharomyces cerevisiae.
    Füllekrug J; Boehm J; Röttger S; Nilsson T; Mieskes G; Schmitt HD
    Eur J Cell Biol; 1997 Sep; 74(1):31-40. PubMed ID: 9309388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting and membrane insertion into the endoplasmic reticulum membrane of Saccharomyces cerevisiae essential protein Rot1.
    Juanes MA; Martínez-Garay CA; Igual JC; Bañó MC
    FEMS Yeast Res; 2010 Sep; 10(6):639-47. PubMed ID: 20608986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of the lumenal domain of Erv41p, a protein involved in transport between the endoplasmic reticulum and Golgi apparatus.
    Biterova EI; Svärd M; Possner DD; Guy JE
    J Mol Biol; 2013 Jun; 425(12):2208-18. PubMed ID: 23524136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific membrane recruitment of Uso1 protein, the essential endoplasmic reticulum-to-Golgi tethering factor in yeast vesicular transport.
    Noda Y; Yamagishi T; Yoda K
    J Cell Biochem; 2007 Jun; 101(3):686-94. PubMed ID: 17192843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How the ER stays in shape.
    Collins RN
    Cell; 2006 Feb; 124(3):464-6. PubMed ID: 16469692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The KKXX signal mediates retrieval of membrane proteins from the Golgi to the ER in yeast.
    Townsley FM; Pelham HR
    Eur J Cell Biol; 1994 Jun; 64(1):211-6. PubMed ID: 7957309
    [No Abstract]   [Full Text] [Related]  

  • 17. An acidic sequence of a putative yeast Golgi membrane protein binds COPII and facilitates ER export.
    Votsmeier C; Gallwitz D
    EMBO J; 2001 Dec; 20(23):6742-50. PubMed ID: 11726510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endoplasmic reticulum retention mediated by the transmembrane domain of type II membrane proteins Sec12p and glucosidase 1.
    Tang BL; Low SH; Hong W
    Eur J Cell Biol; 1997 Jun; 73(2):98-104. PubMed ID: 9208222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A SNARE-like protein required for traffic through the Golgi complex.
    Banfield DK; Lewis MJ; Pelham HR
    Nature; 1995 Jun; 375(6534):806-9. PubMed ID: 7596416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel membrane protein complex on the endoplasmic reticulum and early Golgi compartments in the yeast Saccharomyces cerevisiae.
    Cho JH; Noda Y; Adachi H; Yoda K
    Biosci Biotechnol Biochem; 2001 Oct; 65(10):2226-32. PubMed ID: 11758914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.