BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21539721)

  • 1. Epac1 promotes melanoma metastasis via modification of heparan sulfate.
    Baljinnyam E; Umemura M; De Lorenzo MS; Iwatsubo M; Chen S; Goydos JS; Iwatsubo K
    Pigment Cell Melanoma Res; 2011 Aug; 24(4):680-7. PubMed ID: 21539721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exchange protein directly activated by cyclic AMP increases melanoma cell migration by a Ca2+-dependent mechanism.
    Baljinnyam E; De Lorenzo MS; Xie LH; Iwatsubo M; Chen S; Goydos JS; Nowycky MC; Iwatsubo K
    Cancer Res; 2010 Jul; 70(13):5607-17. PubMed ID: 20551063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epac increases melanoma cell migration by a heparan sulfate-related mechanism.
    Baljinnyam E; Iwatsubo K; Kurotani R; Wang X; Ulucan C; Iwatsubo M; Lagunoff D; Ishikawa Y
    Am J Physiol Cell Physiol; 2009 Oct; 297(4):C802-13. PubMed ID: 19657062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling.
    Baljinnyam E; Umemura M; Chuang C; De Lorenzo MS; Iwatsubo M; Chen S; Goydos JS; Ishikawa Y; Whitelock JM; Iwatsubo K
    Pigment Cell Melanoma Res; 2014 Jul; 27(4):611-20. PubMed ID: 24725364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody-based assay for N-deacetylase activity of heparan sulfate/heparin N-deacetylase/N-sulfotransferase (NDST): novel characteristics of NDST-1 and -2.
    van den Born J; Pikas DS; Pisa BJ; Eriksson I; Kjellen L; Berden JH
    Glycobiology; 2003 Jan; 13(1):1-10. PubMed ID: 12634318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct effects on heparan sulfate structure by different active site mutations in NDST-1.
    Bengtsson J; Eriksson I; Kjellén L
    Biochemistry; 2003 Feb; 42(7):2110-5. PubMed ID: 12590599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disturbed Ca2+ kinetics in N-deacetylase/N-sulfotransferase-1 defective myotubes.
    Jenniskens GJ; Ringvall M; Koopman WJ; Ledin J; Kjellén L; Willems PH; Forsberg E; Veerkamp JH; van Kuppevelt TH
    J Cell Sci; 2003 Jun; 116(Pt 11):2187-93. PubMed ID: 12692154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the N-deacetylase domain from the heparan sulfate N-deacetylase/N-sulfotransferase 2.
    Duncan MB; Liu M; Fox C; Liu J
    Biochem Biophys Res Commun; 2006 Jan; 339(4):1232-7. PubMed ID: 16343444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelial inflammation: the role of differential expression of N-deacetylase/N-sulphotransferase enzymes in alteration of the immunological properties of heparan sulphate.
    Carter NM; Ali S; Kirby JA
    J Cell Sci; 2003 Sep; 116(Pt 17):3591-600. PubMed ID: 12876215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heparan sulfate endoglycosidase and metastatic potential in murine fibrosarcoma and melanoma.
    Ricoveri W; Cappelletti R
    Cancer Res; 1986 Aug; 46(8):3855-61. PubMed ID: 3731061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the mouse mastocytoma glucosaminyl N-deacetylase/ N-sulfotransferase in human kidney 293 cells results in increased N-sulfation of heparan sulfate.
    Cheung WF; Eriksson I; Kusche-Gullberg M; Lindhal U; Kjellén L
    Biochemistry; 1996 Apr; 35(16):5250-6. PubMed ID: 8611511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of different isoforms of glucosaminyl N-deacetylase/N-sulfotransferase results in distinct heparan sulfate N-sulfation patterns.
    Pikas DS; Eriksson I; Kjellén L
    Biochemistry; 2000 Apr; 39(15):4552-8. PubMed ID: 10758005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate.
    Dou W; Xu Y; Pagadala V; Pedersen LC; Liu J
    J Biol Chem; 2015 Aug; 290(33):20427-37. PubMed ID: 26109066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target selection of heparan sulfate hexuronic acid 2-O-sulfotransferase.
    Smeds E; Feta A; Kusche-Gullberg M
    Glycobiology; 2010 Oct; 20(10):1274-82. PubMed ID: 20554947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heparanases and tumor metastasis.
    Nakajima M; Irimura T; Nicolson GL
    J Cell Biochem; 1988 Feb; 36(2):157-67. PubMed ID: 3281960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ras-associated protein-1 regulates extracellular signal-regulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis.
    Gao L; Feng Y; Bowers R; Becker-Hapak M; Gardner J; Council L; Linette G; Zhao H; Cornelius LA
    Cancer Res; 2006 Aug; 66(16):7880-8. PubMed ID: 16912161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PKA and Epac1 regulate endothelial integrity and migration through parallel and independent pathways.
    Lorenowicz MJ; Fernandez-Borja M; Kooistra MR; Bos JL; Hordijk PL
    Eur J Cell Biol; 2008 Oct; 87(10):779-92. PubMed ID: 18635287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma.
    Ungerer C; Doberstein K; Bürger C; Hardt K; Boehncke WH; Böhm B; Pfeilschifter J; Dummer R; Mihic-Probst D; Gutwein P
    Biochem Biophys Res Commun; 2010 Oct; 401(3):363-9. PubMed ID: 20851104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal expression of perlecan proteoglycan in metastatic melanomas.
    Cohen IR; Murdoch AD; Naso MF; Marchetti D; Berd D; Iozzo RV
    Cancer Res; 1994 Nov; 54(22):5771-4. PubMed ID: 7954396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic AMP signaling as a mediator of vasculogenic mimicry in aggressive human melanoma cells in vitro.
    Lissitzky JC; Parriaux D; Ristorcelli E; Vérine A; Lombardo D; Verrando P
    Cancer Res; 2009 Feb; 69(3):802-9. PubMed ID: 19176384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.