These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21540047)

  • 1. Preference for binocular concordant visual input in early postnatal development remains despite prior monocular deprivation.
    Mitchell DE; Kennie J; Duffy KR
    Vision Res; 2011 Jun; 51(12):1351-9. PubMed ID: 21540047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The long-term effectiveness of different regimens of occlusion on recovery from early monocular deprivation in kittens.
    Mitchell DE
    Philos Trans R Soc Lond B Biol Sci; 1991 Jul; 333(1266):51-79. PubMed ID: 1682958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A special role for binocular visual input during development and as a component of occlusion therapy for treatment of amblyopia.
    Mitchell DE
    Restor Neurol Neurosci; 2008; 26(4-5):425-34. PubMed ID: 18997317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation.
    Duffy KR; Bukhamseen DH; Smithen MJ; Mitchell DE
    Vision Res; 2015 Sep; 114():151-60. PubMed ID: 25536470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protection against deprivation amblyopia depends on relative not absolute daily binocular exposure.
    Mitchell DE; Sengpiel F; Hamilton DC; Schwarzkopf DS; Kennie J
    J Vis; 2011 Jun; 11(7):. PubMed ID: 21680647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The case from animal studies for balanced binocular treatment strategies for human amblyopia.
    Mitchell DE; Duffy KR
    Ophthalmic Physiol Opt; 2014 Mar; 34(2):129-45. PubMed ID: 24588531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short periods of concordant binocular vision prevent the development of deprivation amblyopia.
    Mitchell DE; Kind PC; Sengpiel F; Murphy K
    Eur J Neurosci; 2006 May; 23(9):2458-66. PubMed ID: 16706852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brief daily binocular vision prevents monocular deprivation effects in visual cortex.
    Schwarzkopf DS; Vorobyov V; Mitchell DE; Sengpiel F
    Eur J Neurosci; 2007 Jan; 25(1):270-80. PubMed ID: 17241288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilateral amblyopia after a short period of reverse occlusion in kittens.
    Murphy KM; Mitchell DE
    Nature; 1986 Oct 9-15; 323(6088):536-8. PubMed ID: 3762706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experience-dependent central vision deficits: Neurobiology and visual acuity.
    Williams K; Balsor JL; Beshara S; Beston BR; Jones DG; Murphy KM
    Vision Res; 2015 Sep; 114():68-78. PubMed ID: 25668772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The permanence of the visual recovery that follows reverse occlusion of monocularly deprived kittens.
    Mitchell DE; Murphy KM; Kaye MG
    Invest Ophthalmol Vis Sci; 1984 Aug; 25(8):908-17. PubMed ID: 6746234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binocular visual training to promote recovery from monocular deprivation.
    Murphy KM; Roumeliotis G; Williams K; Beston BR; Jones DG
    J Vis; 2015 Jan; 15(1):15.1.2. PubMed ID: 25572348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlated binocular activity guides recovery from monocular deprivation.
    Kind PC; Mitchell DE; Ahmed B; Blakemore C; Bonhoeffer T; Sengpiel F
    Nature; 2002 Mar; 416(6879):430-3. PubMed ID: 11919632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brief daily periods of binocular vision prevent deprivation-induced acuity loss.
    Mitchell DE; Kind PC; Sengpiel F; Murphy K
    Curr Biol; 2003 Sep; 13(19):1704-8. PubMed ID: 14521836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual cortical recovery from reverse occlusion depends on concordant binocular experience.
    Faulkner SD; Vorobyov V; Sengpiel F
    J Neurophysiol; 2006 Mar; 95(3):1718-26. PubMed ID: 16354732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experience-dependent changes in NMDAR1 expression in the visual cortex of an animal model for amblyopia.
    Murphy KM; Duffy KR; Jones DG
    Vis Neurosci; 2004; 21(4):653-70. PubMed ID: 15579228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine.
    Kasamatsu T; Pettigrew JD
    J Comp Neurol; 1979 May; 185(1):139-61. PubMed ID: 429612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern adaptation of relay cells in the lateral geniculate nucleus of binocular and monocular vision-deprived cats.
    Wang W; Shou TD
    Sheng Li Xue Bao; 2000 Jun; 52(3):230-4. PubMed ID: 11956570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term Monocular Deprivation during Juvenile Critical Period Disrupts Binocular Integration in Mouse Visual Thalamus.
    Huh CYL; Abdelaal K; Salinas KJ; Gu D; Zeitoun J; Figueroa Velez DX; Peach JP; Fowlkes CC; Gandhi SP
    J Neurosci; 2020 Jan; 40(3):585-604. PubMed ID: 31767678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.