These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21540508)

  • 21. Spin-polarized electrical transport properties of organic radicals in presence of zigzag-graphene nanoribbon leads.
    Sarkar S; Kumar A; Cho D
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38265086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Half-metallic graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Nature; 2006 Nov; 444(7117):347-9. PubMed ID: 17108960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy.
    Xu YN; Zhan D; Liu L; Suo H; Ni ZH; Nguyen TT; Zhao C; Shen ZX
    ACS Nano; 2011 Jan; 5(1):147-52. PubMed ID: 21171568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Even-odd chain dependent spin valve effect on a zigzag biphenylene nanoribbon junction.
    Zhang L; Tong P
    J Phys Condens Matter; 2022 Jul; 34(39):. PubMed ID: 35839755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF; Xie XC
    J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spin-polarized transport in hydrogen-passivated graphene and silicene nanoribbons with magnetic transition-metal substituents.
    García-Fuente A; Gallego LJ; Vega A
    Phys Chem Chem Phys; 2016 Aug; 18(32):22606-16. PubMed ID: 27477688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Armchair-edged nanoribbon as a bottleneck to electronic total transmission through a topologically nontrivial graphene nanojunction.
    Jiang L; Liu Z; Zhao X; Zheng Y
    J Phys Condens Matter; 2016 Mar; 28(8):085501. PubMed ID: 26828909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic transport through a graphene-based ferromagnetic/normal/ferromagnetic junction.
    Chen JC; Cheng SG; Shen SQ; Sun QF
    J Phys Condens Matter; 2010 Jan; 22(3):035301. PubMed ID: 21386283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial spin flipping and spin switching phenomena on a Y-shaped graphene nanoribbon ferromagnetic junction with Rashba spin orbit coupling and strain.
    Zhang L; Tong P
    J Phys Condens Matter; 2021 Jun; 33(33):. PubMed ID: 34107454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin-semiconducting properties in silicene nanoribbons.
    Zhao YC; Ni J
    Phys Chem Chem Phys; 2014 Aug; 16(29):15477-82. PubMed ID: 24950009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads.
    Zhou B; Chen X; Zhou B; Ding KH; Zhou G
    J Phys Condens Matter; 2011 Apr; 23(13):135304. PubMed ID: 21415476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical controllable spin pump based on a zigzag silicene nanoribbon junction.
    Zhang L; Tong P
    J Phys Condens Matter; 2017 Dec; 29(49):495303. PubMed ID: 29095145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatially separated spin carriers in spin-semiconducting graphene nanoribbons.
    Wang ZF; Jin S; Liu F
    Phys Rev Lett; 2013 Aug; 111(9):096803. PubMed ID: 24033061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects.
    Botello-Méndez AR; Cruz-Silva E; López-Urías F; Sumpter BG; Meunier V; Terrones M; Terrones H
    ACS Nano; 2009 Nov; 3(11):3606-12. PubMed ID: 19863086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling of graphene nanoribbon devices.
    Guo J
    Nanoscale; 2012 Sep; 4(18):5538-48. PubMed ID: 22875475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ballistic transport in graphene Y-junctions in transverse electric field.
    Nemnes GA; Mitran TL; Dragoman D
    Nanotechnology; 2018 Aug; 29(35):355202. PubMed ID: 29866948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unique chemical reactivity of a graphene nanoribbon's zigzag edge.
    Jiang DE; Sumpter BG; Dai S
    J Chem Phys; 2007 Apr; 126(13):134701. PubMed ID: 17430050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Spin Thermopower in Phosphorene Nanoribbons via Edge-State Modifications.
    Ou J; Zhang Q
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach.
    Yun J; Lee G; Kim KS
    J Phys Chem Lett; 2016 Jul; 7(13):2478-82. PubMed ID: 27299184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Planar tetracoordinate carbon strips in edge decorated graphene nanoribbon.
    Wu M; Pei Y; Zeng XC
    J Am Chem Soc; 2010 Apr; 132(16):5554-5. PubMed ID: 20355698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.