These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 21540962)
1. Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2. Harel E; Long PD; Engel GS Opt Lett; 2011 May; 36(9):1665-7. PubMed ID: 21540962 [TBL] [Abstract][Full Text] [Related]
2. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides. Polívka T; Niedzwiedzki D; Fuciman M; Sundström V; Frank HA J Phys Chem B; 2007 Jun; 111(25):7422-31. PubMed ID: 17547450 [TBL] [Abstract][Full Text] [Related]
3. The observation of ultrafast excited-state dynamical evolution in B800- partially or completely released LH2 of Rhodobacter sphaeroides 601 at room temperature. Liu W; Liu Y; Yan Y; Liu K; Guo L; Xu C; Qian S J Biomol Struct Dyn; 2006 Apr; 23(5):529-36. PubMed ID: 16494502 [TBL] [Abstract][Full Text] [Related]
4. Transient absorption study of two-photon excitation mechanism in the LH2 complex from purple bacterium Rhodobacter sphaeroides. Stepanenko I; Kompanetz V; Makhneva Z; Chekalin S; Moskalenko A; Razjivin A J Phys Chem B; 2012 Mar; 116(9):2886-90. PubMed ID: 22268655 [TBL] [Abstract][Full Text] [Related]
5. The role of betaArg-10 in the B800 bacteriochlorophyll and carotenoid pigment environment within the light-harvesting LH2 complex of Rhodobacter sphaeroides. Fowler GJ; Hess S; Pullerits T; Sundström V; Hunter CN Biochemistry; 1997 Sep; 36(37):11282-91. PubMed ID: 9287171 [TBL] [Abstract][Full Text] [Related]
6. Effect of the in situ electrochemical oxidation on the pigment-protein arrangement and energy transfer in light-harvesting complex from Rhodobacter sphaeroides 601. Liu W; Lu Y; Liu Y; Liu K; Yan Y; Kong J; Xu C; Qian S Biochem Biophys Res Commun; 2006 Feb; 340(2):505-11. PubMed ID: 16380087 [TBL] [Abstract][Full Text] [Related]
7. Generation of triplet and cation-radical bacteriochlorophyll a in carotenoidless LH1 and LH2 antenna complexes from Rhodobacter sphaeroides. Limantara L; Fujii R; Zhang JP; Kakuno T; Hara H; Kawamori A; Yagura T; Cogdell RJ; Koyama Y Biochemistry; 1998 Dec; 37(50):17469-86. PubMed ID: 9860862 [TBL] [Abstract][Full Text] [Related]
8. Static and dynamic protein impact on electronic properties of light-harvesting complex LH2. Zerlauskiene O; Trinkunas G; Gall A; Robert B; Urboniene V; Valkunas L J Phys Chem B; 2008 Dec; 112(49):15883-92. PubMed ID: 19367872 [TBL] [Abstract][Full Text] [Related]
9. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences. Fidler AF; Harel E; Long PD; Engel GS J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993 [TBL] [Abstract][Full Text] [Related]
10. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy. Fidler AF; Singh VP; Long PD; Dahlberg PD; Engel GS J Chem Phys; 2013 Oct; 139(15):155101. PubMed ID: 24160544 [TBL] [Abstract][Full Text] [Related]
12. Multichromophoric Förster resonance energy transfer from b800 to b850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria. Jang S; Newton MD; Silbey RJ J Phys Chem B; 2007 Jun; 111(24):6807-14. PubMed ID: 17439170 [TBL] [Abstract][Full Text] [Related]
13. Single-photon absorption and emission from a natural photosynthetic complex. Li Q; Orcutt K; Cook RL; Sabines-Chesterking J; Tong AL; Schlau-Cohen GS; Zhang X; Fleming GR; Whaley KB Nature; 2023 Jul; 619(7969):300-304. PubMed ID: 37316658 [TBL] [Abstract][Full Text] [Related]
14. Pigment organization and energy level structure in light-harvesting complex 4: insights from two-dimensional electronic spectroscopy. Read EL; Schlau-Cohen GS; Engel GS; Georgiou T; Papiz MZ; Fleming GR J Phys Chem B; 2009 May; 113(18):6495-504. PubMed ID: 19402730 [TBL] [Abstract][Full Text] [Related]
15. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria. Ostroumov EE; Mulvaney RM; Cogdell RJ; Scholes GD Science; 2013 Apr; 340(6128):52-6. PubMed ID: 23559244 [TBL] [Abstract][Full Text] [Related]
16. Excitation energy transfer between the B850 and B875 antenna complexes of Rhodobacter sphaeroides. Nagarajan V; Parson WW Biochemistry; 1997 Feb; 36(8):2300-6. PubMed ID: 9047332 [TBL] [Abstract][Full Text] [Related]
17. Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Koolhaus MH; Frese RN; Fowler GJ; Bibby TS; Georgakopoulou S; van der Zwan G; Hunter CN; van Grondelle R Biochemistry; 1998 Apr; 37(14):4693-8. PubMed ID: 9548732 [TBL] [Abstract][Full Text] [Related]
18. Selective chemical shift assignment of B800 and B850 bacteriochlorophylls in uniformly [13C,15N]-labeled light-harvesting complexes by solid-state NMR spectroscopy at ultra-high magnetic field. van Gammeren AJ; Buda F; Hulsbergen FB; Kiihne S; Hollander JG; Egorova-Zachernyuk TA; Fraser NJ; Cogdell RJ; de Groot HJ J Am Chem Soc; 2005 Mar; 127(9):3213-9. PubMed ID: 15740162 [TBL] [Abstract][Full Text] [Related]
19. Two-photon excitation spectroscopy of carotenoid-containing and carotenoid-depleted LH2 complexes from purple bacteria. Stepanenko I; Kompanetz V; Makhneva Z; Chekalin S; Moskalenko A; Razjivin A J Phys Chem B; 2009 Aug; 113(34):11720-3. PubMed ID: 19650635 [TBL] [Abstract][Full Text] [Related]
20. Effects of aggregation on the excitation dynamics of LH2 from Thermochromatium tepidum in aqueous phase and in chromatophores. Yang F; Yu LJ; Wang P; Ai XC; Wang ZY; Zhang JP J Phys Chem B; 2011 Jun; 115(24):7906-13. PubMed ID: 21630650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]