These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21540978)

  • 1. Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications.
    Du QG; Kam CH; Demir HV; Yu HY; Sun XW
    Opt Lett; 2011 May; 36(9):1713-5. PubMed ID: 21540978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications.
    Du QG; Kam CH; Demir HV; Yu HY; Sun XW
    Opt Lett; 2011 May; 36(10):1884-6. PubMed ID: 21593923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.
    Lin C; Povinelli ML
    Opt Express; 2009 Oct; 17(22):19371-81. PubMed ID: 19997158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light trapping in randomly arranged silicon nanorocket arrays for photovoltaic applications.
    Zhang FQ; Peng KQ; Sun RN; Hu Y; Lee ST
    Nanotechnology; 2015 Sep; 26(37):375401. PubMed ID: 26303032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode-based analysis of silicon nanohole arrays for photovoltaic applications.
    Donnelly JL; Sturmberg BC; Dossou KB; Botten LC; Asatryan AA; Poulton CG; McPhedran RC; Martijn de Sterke C
    Opt Express; 2014 Aug; 22 Suppl 5():A1343-54. PubMed ID: 25322189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband light absorption enhancement in randomly rotated elliptical nanohole arrays for photovoltaic application.
    Qin X; Wu Y; Zhang Z; Xia Z; Zhou J; Zhu J
    Appl Opt; 2019 Feb; 58(4):1152-1157. PubMed ID: 30874166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modal analysis of enhanced absorption in silicon nanowire arrays.
    Sturmberg BC; Dossou KB; Botten LC; Asatryan AA; Poulton CG; de Sterke CM; McPhedran RC
    Opt Express; 2011 Sep; 19 Suppl 5():A1067-81. PubMed ID: 21935249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications.
    Bao H; Ruan X
    Opt Lett; 2010 Oct; 35(20):3378-80. PubMed ID: 20967072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application.
    Wang F; Yu H; Li J; Sun X; Wang X; Zheng H
    Opt Lett; 2010 Jan; 35(1):40-2. PubMed ID: 20664666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband absorption enhancement in elliptical silicon nanowire arrays for photovoltaic applications.
    Wu Y; Xia Z; Liang Z; Zhou J; Jiao H; Cao H; Qin X
    Opt Express; 2014 Aug; 22 Suppl 5():A1292-302. PubMed ID: 25322184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical absorption enhancement in a Si nanohole structure with hexagonal unit cell for solar cell application.
    Hong L; Rusli ; Wang X; Zheng H; Wang J; Wang H; Yu H
    Nanotechnology; 2014 Oct; 25(41):415303. PubMed ID: 25258043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition.
    Cansizoglu MF; Engelken R; Seo HW; Karabacak T
    ACS Nano; 2010 Feb; 4(2):733-40. PubMed ID: 20131854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays.
    Najiminaini M; Vasefi F; Kaminska B; Carson JJ
    Opt Express; 2010 Oct; 18(21):22255-70. PubMed ID: 20941127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications.
    Khaleque T; Svavarsson HG; Magnusson R
    Opt Express; 2013 Jul; 21 Suppl 4():A631-41. PubMed ID: 24104490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient broadband light absorption in elliptical nanohole arrays for photovoltaic application.
    Xia Z; Qin X; Wu Y; Pan Y; Zhou J; Zhang Z
    Opt Lett; 2015 Dec; 40(24):5814-7. PubMed ID: 26670519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic Spectrum Analysis and Its Influence on the Photoelectric Conversion Efficiency of Solar Cells.
    Hu K; Ding E; Wangyang P; Wang Q
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6037-43. PubMed ID: 27427668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband high efficiency silicon nanowire arrays with radial diversity within diamond-like geometrical distribution for photovoltaic applications.
    Al-Zoubi OH; Said TM; Alher MA; El-Ghazaly S; Naseem H
    Opt Express; 2015 Jul; 23(15):A767-78. PubMed ID: 26367679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays.
    Wen X; Yi M; Zhang D; Wang P; Lu Y; Ming H
    Nanotechnology; 2011 Feb; 22(8):085203. PubMed ID: 21242613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel 3D Au nanohole arrays with outstanding optical properties.
    Ai B; Yu Y; Möhwald H; Zhang G
    Nanotechnology; 2013 Jan; 24(3):035303. PubMed ID: 23263405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Bonding structure in silicon nitride thin films containing silicon nano-particles].
    Ding WG; Yu W; Yang YB; Zhang JY; Fu GS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Oct; 26(10):1798-801. PubMed ID: 17205723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.