BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21541009)

  • 1. Local de novo assembly of RAD paired-end contigs using short sequencing reads.
    Etter PD; Preston JL; Bassham S; Cresko WA; Johnson EA
    PLoS One; 2011 Apr; 6(4):e18561. PubMed ID: 21541009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RAD paired-end sequencing for local de novo assembly and SNP discovery in non-model organisms.
    Etter PD; Johnson E
    Methods Mol Biol; 2012; 888():135-51. PubMed ID: 22665280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags.
    Hohenlohe PA; Bassham S; Etter PD; Stiffler N; Johnson EA; Cresko WA
    PLoS Genet; 2010 Feb; 6(2):e1000862. PubMed ID: 20195501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism.
    Baxter SW; Davey JW; Johnston JS; Shelton AM; Heckel DG; Jiggins CD; Blaxter ML
    PLoS One; 2011 Apr; 6(4):e19315. PubMed ID: 21541297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.
    Peichel CL; Sullivan ST; Liachko I; White MA
    J Hered; 2017 Sep; 108(6):693-700. PubMed ID: 28821183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach.
    Pegadaraju V; Nipper R; Hulke B; Qi L; Schultz Q
    BMC Genomics; 2013 Aug; 14():556. PubMed ID: 23947483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying wrong assemblies in de novo short read primary sequence assembly contigs.
    Chawla V; Kumar R; Shankar R
    J Biosci; 2016 Sep; 41(3):455-74. PubMed ID: 27581937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the whole greater than the sum of its parts? De novo assembly strategies for bacterial genomes based on paired-end sequencing.
    Chen TW; Gan RC; Chang YF; Liao WC; Wu TH; Lee CC; Huang PJ; Lee CY; Chen YY; Chiu CH; Tang P
    BMC Genomics; 2015 Aug; 16(1):648. PubMed ID: 26315384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNP discovery in swine by reduced representation and high throughput pyrosequencing.
    Wiedmann RT; Smith TP; Nonneman DJ
    BMC Genet; 2008 Dec; 9():81. PubMed ID: 19055830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffolding pre-assembled contigs using SSPACE.
    Boetzer M; Henkel CV; Jansen HJ; Butler D; Pirovano W
    Bioinformatics; 2011 Feb; 27(4):578-9. PubMed ID: 21149342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: applied to turkey.
    Kerstens HH; Crooijmans RP; Veenendaal A; Dibbits BW; Chin-A-Woeng TF; den Dunnen JT; Groenen MA
    BMC Genomics; 2009 Oct; 10():479. PubMed ID: 19835600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid and cost-effective approach for the development of polymorphic microsatellites in non-model species using paired-end RAD sequencing.
    Xue DX; Li YL; Liu JX
    Mol Genet Genomics; 2017 Oct; 292(5):1165-1174. PubMed ID: 28634825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudo-Sanger sequencing: massively parallel production of long and near error-free reads using NGS technology.
    Ruan J; Jiang L; Chong Z; Gong Q; Li H; Li C; Tao Y; Zheng C; Zhai W; Turissini D; Cannon CH; Lu X; Wu CI
    BMC Genomics; 2013 Oct; 14(1):711. PubMed ID: 24134808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reference-free SNP discovery for the Eurasian beaver from restriction site-associated DNA paired-end data.
    Senn H; Ogden R; Cezard T; Gharbi K; Iqbal Z; Johnson E; Kamps-Hughes N; Rosell F; McEwing R
    Mol Ecol; 2013 Jun; 22(11):3141-50. PubMed ID: 23432348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads.
    Wang Z; Hobson N; Galindo L; Zhu S; Shi D; McDill J; Yang L; Hawkins S; Neutelings G; Datla R; Lambert G; Galbraith DW; Grassa CJ; Geraldes A; Cronk QC; Cullis C; Dash PK; Kumar PA; Cloutier S; Sharpe AG; Wong GK; Wang J; Deyholos MK
    Plant J; 2012 Nov; 72(3):461-73. PubMed ID: 22757964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers.
    Miller MR; Dunham JP; Amores A; Cresko WA; Johnson EA
    Genome Res; 2007 Feb; 17(2):240-8. PubMed ID: 17189378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics.
    Rochette NC; Rivera-Colón AG; Catchen JM
    Mol Ecol; 2019 Nov; 28(21):4737-4754. PubMed ID: 31550391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ABySS: a parallel assembler for short read sequence data.
    Simpson JT; Wong K; Jackman SD; Schein JE; Jones SJ; Birol I
    Genome Res; 2009 Jun; 19(6):1117-23. PubMed ID: 19251739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optimized approach for local de novo assembly of overlapping paired-end RAD reads from multiple individuals.
    Li YL; Xue DX; Zhang BD; Liu JX
    R Soc Open Sci; 2018 Feb; 5(2):171589. PubMed ID: 29515871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rainbow: an integrated tool for efficient clustering and assembling RAD-seq reads.
    Chong Z; Ruan J; Wu CI
    Bioinformatics; 2012 Nov; 28(21):2732-7. PubMed ID: 22942077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.