These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 21541022)
1. Environmental stress-dependent effects of deletions encompassing Hsp70Ba on canalization and quantitative trait asymmetry in Drosophila melanogaster. Takahashi KH; Daborn PJ; Hoffmann AA; Takano-Shimizu T PLoS One; 2011 Apr; 6(4):e17295. PubMed ID: 21541022 [TBL] [Abstract][Full Text] [Related]
2. Effects of small Hsp genes on developmental stability and microenvironmental canalization. Takahashi KH; Rako L; Takano-Shimizu T; Hoffmann AA; Lee SF BMC Evol Biol; 2010 Sep; 10():284. PubMed ID: 20846409 [TBL] [Abstract][Full Text] [Related]
3. Control of canalization and evolvability by Hsp90. Milton CC; Ulane CM; Rutherford S PLoS One; 2006 Dec; 1(1):e75. PubMed ID: 17183707 [TBL] [Abstract][Full Text] [Related]
4. A single basis for developmental buffering of Drosophila wing shape. Breuker CJ; Patterson JS; Klingenberg CP PLoS One; 2006 Dec; 1(1):e7. PubMed ID: 17183701 [TBL] [Abstract][Full Text] [Related]
5. Quantitative variation of four morphological traits in Drosophila melanogaster under larval crowding. Imasheva AG; Bubliy OA Hereditas; 2003; 138(3):193-9. PubMed ID: 14641483 [TBL] [Abstract][Full Text] [Related]
6. Half-sib analysis of three morphological traits in Drosophila melanogaster under poor nutrition. Bubliy OA; Imasheva AG; Loeschcke V Hereditas; 2000; 133(1):59-63. PubMed ID: 11206855 [TBL] [Abstract][Full Text] [Related]
7. Modification of heat-shock gene expression in Drosophila melanogaster populations via transposable elements. Lerman DN; Michalak P; Helin AB; Bettencourt BR; Feder ME Mol Biol Evol; 2003 Jan; 20(1):135-44. PubMed ID: 12519916 [TBL] [Abstract][Full Text] [Related]
8. Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster. Singh AK; Lakhotia SC Cell Stress Chaperones; 2016 Jan; 21(1):105-120. PubMed ID: 26386576 [TBL] [Abstract][Full Text] [Related]
9. Developmental stability: a major role for cyclin G in drosophila melanogaster. Debat V; Bloyer S; Faradji F; Gidaszewski N; Navarro N; Orozco-Terwengel P; Ribeiro V; Schlötterer C; Deutsch JS; Peronnet F PLoS Genet; 2011 Oct; 7(10):e1002314. PubMed ID: 21998598 [TBL] [Abstract][Full Text] [Related]
10. Lack of response to artificial selection on developmental stability of partial wing shape components in Drosophila melanogaster. Tsujino M; Takahashi KH Genetica; 2014 Apr; 142(2):177-84. PubMed ID: 24744255 [TBL] [Abstract][Full Text] [Related]
11. Effect of E(sev) and Su(Raf) Hsp83 mutants and trans-heterozygotes on bristle trait means and variation in Drosophila melanogaster. Milton CC; Batterham P; McKenzie JA; Hoffmann AA Genetics; 2005 Sep; 171(1):119-30. PubMed ID: 16183907 [TBL] [Abstract][Full Text] [Related]
12. Novel genetic capacitors and potentiators for the natural genetic variation of sensory bristles and their trait specificity in Drosophila melanogaster. Takahashi KH Mol Ecol; 2015 Nov; 24(22):5561-72. PubMed ID: 26441383 [TBL] [Abstract][Full Text] [Related]
13. Adverse effect of organophosphate compounds, dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila melanogaster: 70kDa heat shock protein as a marker of cellular damage. Gupta SC; Siddique HR; Mathur N; Mishra RK; Mitra K; Saxena DK; Chowdhuri DK Toxicology; 2007 Aug; 238(1):1-14. PubMed ID: 17618723 [TBL] [Abstract][Full Text] [Related]
14. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster. Wang H; Wang K; Xiao G; Ma J; Wang B; Shen S; Fu X; Zou G; Zou B Sci Rep; 2015 Oct; 5():14965. PubMed ID: 26446369 [TBL] [Abstract][Full Text] [Related]
15. Survival rate and expression of Heat-shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma. Udaka H; Ueda C; Goto SG J Insect Physiol; 2010 Dec; 56(12):1889-94. PubMed ID: 20713057 [TBL] [Abstract][Full Text] [Related]
16. Little effect of HSP90 inhibition on the quantitative wing traits variation in Drosophila melanogaster. Takahashi KH Genetica; 2017 Feb; 145(1):9-18. PubMed ID: 27909948 [TBL] [Abstract][Full Text] [Related]
17. Gene-by-temperature interactions and candidate plasticity genes for morphological traits in Drosophila melanogaster. Carreira VP; Imberti MA; Mensch J; Fanara JJ PLoS One; 2013; 8(7):e70851. PubMed ID: 23936253 [TBL] [Abstract][Full Text] [Related]
18. A naturally occurring variant of Hsp90 that is associated with decanalization. Sgrò CM; Wegener B; Hoffmann AA Proc Biol Sci; 2010 Jul; 277(1690):2049-57. PubMed ID: 20200026 [TBL] [Abstract][Full Text] [Related]
19. Menin links the stress response to genome stability in Drosophila melanogaster. Papaconstantinou M; Pepper AN; Wu Y; Kasimer D; Westwood T; Campos AR; Bédard PA PLoS One; 2010 Nov; 5(11):e14049. PubMed ID: 21124979 [TBL] [Abstract][Full Text] [Related]
20. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene. Shilova VY; Zatsepina OG; Garbuz DG; Funikov SY; Zelentsova ES; Schostak NG; Kulikov AM; Evgen'ev MB Insect Mol Biol; 2018 Feb; 27(1):61-72. PubMed ID: 28796386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]