BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 21541066)

  • 1. Anchoring intrinsically disordered proteins to multiple targets: lessons from N-terminus of the p53 protein.
    Huang Y; Liu Z
    Int J Mol Sci; 2011 Feb; 12(2):1410-30. PubMed ID: 21541066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case.
    Ithuralde RE; Turjanski AG
    PLoS One; 2016; 11(1):e0144284. PubMed ID: 26742101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction.
    Neochoritis CG; Atmaj J; Twarda-Clapa A; Surmiak E; Skalniak L; Köhler LM; Muszak D; Kurpiewska K; Kalinowska-Tłuścik J; Beck B; Holak TA; Dömling A
    Eur J Med Chem; 2019 Nov; 182():111588. PubMed ID: 31421630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding Kinetics of the Intrinsically Disordered p53 Family Transactivation Domains and MDM2.
    Åberg E; Karlsson OA; Andersson E; Jemth P
    J Phys Chem B; 2018 Jul; 122(27):6899-6905. PubMed ID: 29878773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding Ensembles of
    Lang L; Perez A
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33401765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations.
    Xiong K; Zwier MC; Myshakina NS; Burger VM; Asher SA; Chong LT
    J Phys Chem A; 2011 Sep; 115(34):9520-7. PubMed ID: 21528875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Selection and Relaxation of the Intrinsically Disordered Region of a Protein upon Binding.
    Tran DP; Kitao A
    J Chem Theory Comput; 2020 Apr; 16(4):2835-2845. PubMed ID: 32192337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the dynamics of disorder.
    Fox SJ; Kannan S
    Prog Biophys Mol Biol; 2017 Sep; 128():57-62. PubMed ID: 28554553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the K24N mutation on the transactivation domain of p53 and its binding to murine double-minute clone 2.
    Zhan YA; Wu H; Powell AT; Daughdrill GW; Ytreberg FM
    Proteins; 2013 Oct; 81(10):1738-47. PubMed ID: 23609977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long range recognition and selection in IDPs: the interactions of the C-terminus of p53.
    Kannan S; Lane DP; Verma CS
    Sci Rep; 2016 Mar; 6():23750. PubMed ID: 27030593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Mechanism of p53 Rescue by SUSP4.
    Kim DH; Lee C; Lee SH; Kim KT; Han JJ; Cha EJ; Lim JE; Cho YJ; Hong SH; Han KH
    Angew Chem Int Ed Engl; 2017 Jan; 56(5):1278-1282. PubMed ID: 28000315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain.
    Kussie PH; Gorina S; Marechal V; Elenbaas B; Moreau J; Levine AJ; Pavletich NP
    Science; 1996 Nov; 274(5289):948-53. PubMed ID: 8875929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models.
    Zhou G; Pantelopulos GA; Mukherjee S; Voelz VA
    Biophys J; 2017 Aug; 113(4):785-793. PubMed ID: 28834715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking.
    Mukherjee S; Pantelopulos GA; Voelz VA
    Sci Rep; 2016 Aug; 6():31631. PubMed ID: 27538695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cis conformation of proline leads to weaker binding of a p53 peptide to MDM2 compared to trans.
    Zhan YA; Ytreberg FM
    Arch Biochem Biophys; 2015 Jun; 575():22-9. PubMed ID: 25840370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rescuing p53 from mdm2 by a pre-structured motif in intrinsically unfolded SUMO specific protease 4.
    Kim DH; Lee C; Kim B; Lee SH; Han KH
    BMB Rep; 2017 Oct; 50(10):485-486. PubMed ID: 28712389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells.
    Borcherds W; Theillet FX; Katzer A; Finzel A; Mishall KM; Powell AT; Wu H; Manieri W; Dieterich C; Selenko P; Loewer A; Daughdrill GW
    Nat Chem Biol; 2014 Dec; 10(12):1000-2. PubMed ID: 25362358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two distinct motifs within the p53 transactivation domain bind to the Taz2 domain of p300 and are differentially affected by phosphorylation.
    Jenkins LM; Yamaguchi H; Hayashi R; Cherry S; Tropea JE; Miller M; Wlodawer A; Appella E; Mazur SJ
    Biochemistry; 2009 Feb; 48(6):1244-55. PubMed ID: 19166313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Atomistic Simulation of Pathways and Calculation of Rate Constants for a Protein-Peptide Binding Process: Application to the MDM2 Protein and an Intrinsically Disordered p53 Peptide.
    Zwier MC; Pratt AJ; Adelman JL; Kaus JW; Zuckerman DM; Chong LT
    J Phys Chem Lett; 2016 Sep; 7(17):3440-5. PubMed ID: 27532687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transient manifold structure of the p53 extreme C-terminal domain: insight into disorder, recognition, and binding promiscuity by molecular dynamics simulations.
    Fadda E; Nixon MG
    Phys Chem Chem Phys; 2017 Aug; 19(32):21287-21296. PubMed ID: 28597880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.