These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 2154119)

  • 1. Endurance training, not acute exercise, differentially alters beta-receptors and cyclase in skeletal fiber types.
    Buckenmeyer PJ; Goldfarb AH; Partilla JS; Piñeyro MA; Dax EM
    Am J Physiol; 1990 Jan; 258(1 Pt 1):E71-7. PubMed ID: 2154119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of endurance training on beta-adrenergic system in three different skeletal muscles.
    Plourde G; Rousseau-Migneron S; Nadeau A
    J Appl Physiol (1985); 1993 Apr; 74(4):1641-6. PubMed ID: 8390439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of physical training on ventricular beta-adrenergic receptor adenylate cyclase system of diabetic rats.
    Plourde G; Martin M; Rousseau-Migneron S; Nadeau A
    Metabolism; 1991 Apr; 40(4):362-7. PubMed ID: 1849219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of endurance physical training on rat liver adenylyl cyclase system.
    Nieto JL; Díaz-Laviada I; Guillén A; Haro A
    Cell Signal; 1996 Jun; 8(4):317-22. PubMed ID: 8842534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental alterations in guanine nucleotide regulation of the beta-adrenergic receptor-adenylate cyclase system of skeletal muscle.
    Smith PB
    J Biol Chem; 1984 Jun; 259(11):7294-9. PubMed ID: 6327715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-adrenergic receptors, glucagon receptors, and their relationship to adenylate cyclase in rat liver during aging.
    Dax EM; Partilla JS; Piñeyro MA; Gregerman RI
    Endocrinology; 1987 Apr; 120(4):1534-41. PubMed ID: 3030705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desensitization of beta-adrenergic receptor-coupled adenylate cyclase in cerebral cortex after in vivo treatment of rats with desipramine.
    Okada F; Tokumitsu Y; Ui M
    J Neurochem; 1986 Aug; 47(2):454-9. PubMed ID: 3016174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes of beta-adrenergic receptor-linked adenylate cyclase of rat liver.
    Katz MS; Boland SR; Schmidt SJ
    Am J Physiol; 1985 Jun; 248(6 Pt 1):E712-8. PubMed ID: 2860808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic norepinephrine elicits desensitization by uncoupling the beta-receptor.
    Vatner DE; Vatner SF; Nejima J; Uemura N; Susanni EE; Hintze TH; Homcy CJ
    J Clin Invest; 1989 Dec; 84(6):1741-8. PubMed ID: 2556443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of fluoride on adenylate cyclase activity and guanine nucleotide regulation of agonist high-affinity receptor binding.
    Stadel JM; Crooke ST
    Biochem J; 1988 Aug; 254(1):15-20. PubMed ID: 2845943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-adrenergic receptor distribution among muscle fiber types and resistance arterioles of white, red, and intermediate skeletal muscle.
    Martin WH; Murphree SS; Saffitz JE
    Circ Res; 1989 Jun; 64(6):1096-105. PubMed ID: 2541942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical training increases beta-adrenoceptor density and adenylate cyclase activity in high-oxidative skeletal muscle of diabetic rats.
    Plourde G; Rousseau-Migneron S; Nadeau A
    Metabolism; 1992 Dec; 41(12):1331-5. PubMed ID: 1334210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-adrenoceptor adenylate cyclase system adaptation to physical training in rat ventricular tissue.
    Plourde G; Rousseau-Migneron S; Nadeau A
    J Appl Physiol (1985); 1991 Apr; 70(4):1633-8. PubMed ID: 1647390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle beta-adrenergic receptors: variations due to fiber type and training.
    Williams RS; Caron MG; Daniel K
    Am J Physiol; 1984 Feb; 246(2 Pt 1):E160-7. PubMed ID: 6320672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of catecholamine-responsive adenylate cyclase in HeLa cells by sodium butyrate. Evidence for a more efficient stimulatory regulatory component.
    Kassis S; Henneberry RC; Fishman PH
    J Biol Chem; 1984 Apr; 259(8):4910-6. PubMed ID: 6325411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in beta-adrenergic stimulation of myocardial adenylate cyclase in endotoxic rats.
    Romano FD; Jones SB
    Am J Physiol; 1986 Mar; 250(3 Pt 2):R358-64. PubMed ID: 3006518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of the beta-adrenergic stimulation of adenylate cyclase activity in rat ventral prostate and its modulation by androgens.
    Poyet P; Gagne B; Labrie F
    Prostate; 1986; 9(3):237-45. PubMed ID: 3022260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of zinc status in altered cardiac adenylate cyclase activity in diabetic rats.
    Mooradian AD; Morley JE; Scarpace PJ
    Acta Endocrinol (Copenh); 1988 Oct; 119(2):174-80. PubMed ID: 2845690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosol activator protein from rat reticulocytes requires the stimulatory guanine nucleotide-binding protein for its actions on adenylate cyclase.
    Shane E; Yeh M; Feigin AS; Owens JM; Bilezikian JP
    Endocrinology; 1985 Jul; 117(1):255-63. PubMed ID: 2988918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catecholamine and guanine nucleotide activation of skeletal muscle adenylate cyclase.
    Nambi P; Drummond GI
    Biochim Biophys Acta; 1979 Mar; 583(3):287-94. PubMed ID: 36171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.