These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21541341)

  • 1. Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks.
    Vohradska E; Vohradsky J
    PLoS One; 2011 Apr; 6(4):e18827. PubMed ID: 21541341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle.
    Ferrezuelo F; Colomina N; Futcher B; Aldea M
    Genome Biol; 2010; 11(6):R67. PubMed ID: 20573214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic simulation for the inference of transcriptional control network of yeast cyclins genes.
    Vohradsky J
    Nucleic Acids Res; 2012 Aug; 40(15):7096-103. PubMed ID: 22589416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement and modeling of transcriptional noise in the cell cycle regulatory network.
    Ball DA; Adames NR; Reischmann N; Barik D; Franck CT; Tyson JJ; Peccoud J
    Cell Cycle; 2013 Oct; 12(19):3203-18. PubMed ID: 24013422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating network changes from lifespan measurements using a parsimonious gene network model of cellular aging.
    Qin H
    BMC Bioinformatics; 2019 Nov; 20(1):599. PubMed ID: 31747877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
    Ludl AA; Michoel T
    Mol Omics; 2021 Apr; 17(2):241-251. PubMed ID: 33438713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression.
    Prasad V; Venkatesh KV
    BMC Syst Biol; 2008 Nov; 2():97. PubMed ID: 19014615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global proteomic analysis of Saccharomyces cerevisiae identifies molecular pathways of histone modifications.
    Jackson J; Shilatifard A
    Methods Mol Biol; 2009; 548():175-86. PubMed ID: 19521825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing regulatory features of the current transcriptional network of Saccharomyces cerevisiae.
    Monteiro PT; Pedreira T; Galocha M; Teixeira MC; Chaouiya C
    Sci Rep; 2020 Oct; 10(1):17744. PubMed ID: 33082399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A network biology approach to aging in yeast.
    Lorenz DR; Cantor CR; Collins JJ
    Proc Natl Acad Sci U S A; 2009 Jan; 106(4):1145-50. PubMed ID: 19164565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of genomic approaches with functional genetic experiments reveals two modes of repression of yeast middle-phase meiosis genes.
    Klutstein M; Siegfried Z; Gispan A; Farkash-Amar S; Zinman G; Bar-Joseph Z; Simchen G; Simon I
    BMC Genomics; 2010 Aug; 11():478. PubMed ID: 20716365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae.
    Hu F; Aparicio OM
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8910-5. PubMed ID: 15956196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive feedback of G1 cyclins ensures coherent cell cycle entry.
    Skotheim JM; Di Talia S; Siggia ED; Cross FR
    Nature; 2008 Jul; 454(7202):291-6. PubMed ID: 18633409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inference of sparse combinatorial-control networks from gene-expression data: a message passing approach.
    Bailly-Bechet M; Braunstein A; Pagnani A; Weigt M; Zecchina R
    BMC Bioinformatics; 2010 Jun; 11():355. PubMed ID: 20587029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin regulatory genes differentially interact in networks to facilitate distinct GAL1 activity and noise profiles.
    Moreno DF; Acar M
    Curr Genet; 2021 Apr; 67(2):267-281. PubMed ID: 33159551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of a splicing regulatory network within the meiotic gene expression program of Saccharomyces cerevisiae.
    Munding EM; Igel AH; Shiue L; Dorighi KM; Treviño LR; Ares M
    Genes Dev; 2010 Dec; 24(23):2693-704. PubMed ID: 21123654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of yeast filamentous-form growth by modules in an integrated molecular network.
    Prinz S; Avila-Campillo I; Aldridge C; Srinivasan A; Dimitrov K; Siegel AF; Galitski T
    Genome Res; 2004 Mar; 14(3):380-90. PubMed ID: 14993204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.