These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21541341)

  • 21. A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase.
    Measday V; Moore L; Retnakaran R; Lee J; Donoviel M; Neiman AM; Andrews B
    Mol Cell Biol; 1997 Mar; 17(3):1212-23. PubMed ID: 9032248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel model-free approach for reconstruction of time-delayed gene regulatory networks.
    Jiang W; Li X; Guo Z; Li C; Wang L; Rao S
    Sci China C Life Sci; 2006 Apr; 49(2):190-200. PubMed ID: 16704123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A TATA binding protein regulatory network that governs transcription complex assembly.
    Huisinga KL; Pugh BF
    Genome Biol; 2007; 8(4):R46. PubMed ID: 17407552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae.
    Farkas IJ; Wu C; Chennubhotla C; Bahar I; Oltvai ZN
    BMC Bioinformatics; 2006 Oct; 7():478. PubMed ID: 17069658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The yeast cap binding complex modulates transcription factor recruitment and establishes proper histone H3K36 trimethylation during active transcription.
    Hossain MA; Chung C; Pradhan SK; Johnson TL
    Mol Cell Biol; 2013 Feb; 33(4):785-99. PubMed ID: 23230273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A copula method for modeling directional dependence of genes.
    Kim JM; Jung YS; Sungur EA; Han KH; Park C; Sohn I
    BMC Bioinformatics; 2008 May; 9():225. PubMed ID: 18447957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and properties of transcriptional networks driving selenite stress response in yeasts.
    Salin H; Fardeau V; Piccini E; Lelandais G; Tanty V; Lemoine S; Jacq C; Devaux F
    BMC Genomics; 2008 Jul; 9():333. PubMed ID: 18627600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A transcriptome-wide analysis deciphers distinct roles of G1 cyclins in temporal organization of the yeast cell cycle.
    Teufel L; Tummler K; Flöttmann M; Herrmann A; Barkai N; Klipp E
    Sci Rep; 2019 Mar; 9(1):3343. PubMed ID: 30833602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic complex formation during the yeast cell cycle.
    de Lichtenberg U; Jensen LJ; Brunak S; Bork P
    Science; 2005 Feb; 307(5710):724-7. PubMed ID: 15692050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variance in epistasis links gene regulation and evolutionary rate in the yeast genetic interaction network.
    Fierst JL; Phillips PC
    Genome Biol Evol; 2012; 4(11):1080-7. PubMed ID: 23019067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A general mechanism for network-dosage compensation in gene circuits.
    Acar M; Pando BF; Arnold FH; Elowitz MB; van Oudenaarden A
    Science; 2010 Sep; 329(5999):1656-60. PubMed ID: 20929850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement variation determines the gene network topology reconstructed from experimental data: a case study of the yeast cyclin network.
    To CC; Vohradsky J
    FASEB J; 2010 Sep; 24(9):3468-78. PubMed ID: 20511392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mediator acts upstream of the transcriptional activator Gal4.
    Ang K; Ee G; Ang E; Koh E; Siew WL; Chan YM; Nur S; Tan YS; Lehming N
    PLoS Biol; 2012; 10(3):e1001290. PubMed ID: 22479149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle.
    Chen HC; Lee HC; Lin TY; Li WH; Chen BS
    Bioinformatics; 2004 Aug; 20(12):1914-27. PubMed ID: 15044243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mitotic Clb cyclins are required to alleviate HIR-mediated repression of the yeast histone genes at the G1/S transition.
    Amin AD; Dimova DK; Ferreira ME; Vishnoi N; Hancock LC; Osley MA; Prochasson P
    Biochim Biophys Acta; 2012 Jan; 1819(1):16-27. PubMed ID: 21978826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational discovery of gene modules and regulatory networks.
    Bar-Joseph Z; Gerber GK; Lee TI; Rinaldi NJ; Yoo JY; Robert F; Gordon DB; Fraenkel E; Jaakkola TS; Young RA; Gifford DK
    Nat Biotechnol; 2003 Nov; 21(11):1337-42. PubMed ID: 14555958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes.
    McGary KL; Lee I; Marcotte EM
    Genome Biol; 2007; 8(12):R258. PubMed ID: 18053250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SBF transcription factor complex positively regulates UV mutagenesis in Saccharomyces cerevisiae.
    Gong J; Siede W
    Biochem Biophys Res Commun; 2009 Feb; 379(4):1009-14. PubMed ID: 19150335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic interaction networks mediate individual statin drug response in
    Busby BP; Niktab E; Roberts CA; Sheridan JP; Coorey NV; Senanayake DS; Connor LM; Munkacsi AB; Atkinson PH
    NPJ Syst Biol Appl; 2019; 5():35. PubMed ID: 31602312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.