These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 21541439)
1. Emergent behavior in particle-laden microfluidic systems informs strategies for improving cell and particle separations. Vahey MD; Voldman J Lab Chip; 2011 Jun; 11(12):2071-80. PubMed ID: 21541439 [TBL] [Abstract][Full Text] [Related]
2. Colloidal surface interactions and membrane fouling: investigations at pore scale. Bacchin P; Marty A; Duru P; Meireles M; Aimar P Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419 [TBL] [Abstract][Full Text] [Related]
3. Dielectrophoretic sorting of cells, fine particles, and macromolecules in the microchip format. Gonzalez CF; Remcho VT J Capill Electrophor Microchip Technol; 2006; 9(5-6):71-7. PubMed ID: 17094291 [TBL] [Abstract][Full Text] [Related]
4. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC; Mey T; Koster S; Verpoorte E Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626 [TBL] [Abstract][Full Text] [Related]
6. On-chip high-speed sorting of micron-sized particles for high-throughput analysis. Holmes D; Sandison ME; Green NG; Morgan H IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169 [TBL] [Abstract][Full Text] [Related]
7. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel. Church C; Zhu J; Xuan X Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386 [TBL] [Abstract][Full Text] [Related]
9. Inertial microfluidics for continuous particle separation in spiral microchannels. Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752 [TBL] [Abstract][Full Text] [Related]
10. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
11. A dielectrophoretic continuous flow sorter using integrated microelectrodes coupled to a channel constriction. Salomon S; Leichlé T; Nicu L Electrophoresis; 2011 Jun; 32(12):1508-14. PubMed ID: 21563186 [TBL] [Abstract][Full Text] [Related]
12. A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow. Johann R; Renaud P Electrophoresis; 2004 Nov; 25(21-22):3720-9. PubMed ID: 15565695 [TBL] [Abstract][Full Text] [Related]
13. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection. Holmes D; Morgan H; Green NG Biosens Bioelectron; 2006 Feb; 21(8):1621-30. PubMed ID: 16332434 [TBL] [Abstract][Full Text] [Related]
14. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665 [TBL] [Abstract][Full Text] [Related]
15. A continuous DC-insulator dielectrophoretic sorter of microparticles. Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990 [TBL] [Abstract][Full Text] [Related]
16. Separation of particles by pulsed dielectrophoresis. Cui HH; Voldman J; He XF; Lim KM Lab Chip; 2009 Aug; 9(16):2306-12. PubMed ID: 19636460 [TBL] [Abstract][Full Text] [Related]
17. A new design for efficient dielectrophoretic separation of cells in a microdevice. Jubery TZ; Dutta P Electrophoresis; 2013 Mar; 34(5):643-50. PubMed ID: 23255020 [TBL] [Abstract][Full Text] [Related]
18. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions. Xu B; Gilchrist JF J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321 [TBL] [Abstract][Full Text] [Related]
19. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device. Staton SJ; Chen KP; Taylor TJ; Pacheco JR; Hayes MA Electrophoresis; 2010 Nov; 31(22):3634-41. PubMed ID: 21077235 [TBL] [Abstract][Full Text] [Related]
20. Influence of particle-particle interactions and particles rotational motion in traveling wave dielectrophoresis. Aubry N; Singh P Electrophoresis; 2006 Feb; 27(3):703-15. PubMed ID: 16400702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]