BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21541714)

  • 1. Development of L-tryptophan production strains by defined genetic modification in Escherichia coli.
    Zhao ZJ; Zou C; Zhu YX; Dai J; Chen S; Wu D; Wu J; Chen J
    J Ind Microbiol Biotechnol; 2011 Dec; 38(12):1921-9. PubMed ID: 21541714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis.
    Liu DX; Fan CS; Tao JH; Liang GX; Gao SE; Wang HJ; Li X; Song DX
    World J Gastroenterol; 2004 Dec; 10(24):3683-7. PubMed ID: 15534933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Regulation of key enzymes in tryptophan biosynthesis pathway in Escherichia coli].
    Yu J; Wang J; Li J; Guo C; Huang Y; Xu Q
    Sheng Wu Gong Cheng Xue Bao; 2008 May; 24(5):844-50. PubMed ID: 18724706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pheA/tyrA/aroF region from Erwinia herbicola: an emerging comparative basis for analysis of gene organization and regulation in enteric bacteria.
    Xia T; Zhao G; Jensen RA
    J Mol Evol; 1993 Feb; 36(2):107-20. PubMed ID: 8094464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New approach to tryptophan production by Escherichia coli: genetic manipulation of composite plasmids in vitro.
    Aiba S; Tsunekawa H; Imanaka T
    Appl Environ Microbiol; 1982 Feb; 43(2):289-97. PubMed ID: 7036897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Random Mutagenesis and Metabolic Engineering for Enhanced Tryptophan Production in
    Deshpande A; Vue J; Morgan J
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32144109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced production of L-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH.
    Zhang C; Zhang J; Kang Z; Du G; Yu X; Wang T; Chen J
    J Ind Microbiol Biotechnol; 2013 Jun; 40(6):643-51. PubMed ID: 23526182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli to enhance phenylalanine production.
    Yakandawala N; Romeo T; Friesen AD; Madhyastha S
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):283-91. PubMed ID: 18080813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of  l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin.
    Wu WB; Guo XL; Zhang ML; Huang QG; Qi F; Huang JZ
    Biotechnol Appl Biochem; 2018 May; 65(3):476-483. PubMed ID: 28872702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli.
    Báez-Viveros JL; Osuna J; Hernández-Chávez G; Soberón X; Bolívar F; Gosset G
    Biotechnol Bioeng; 2004 Aug; 87(4):516-24. PubMed ID: 15286989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clues from Xanthomonas campestris about the evolution of aromatic biosynthesis and its regulation.
    Whitaker RJ; Berry A; Byng GS; Fiske MJ; Jensen RA
    J Mol Evol; 1984-1985; 21(2):139-49. PubMed ID: 6152589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathway Engineering for Phenethylamine Production in
    Xu D; Zhang L
    J Agric Food Chem; 2020 May; 68(21):5917-5926. PubMed ID: 32367713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain.
    Zhang S; Wilson DB; Ganem B
    Biochemistry; 2000 Apr; 39(16):4722-8. PubMed ID: 10769128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction.
    Chen L; Chen M; Ma C; Zeng AP
    Metab Eng; 2018 May; 47():434-444. PubMed ID: 29733896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of regulatory features of the trp operon of Escherichia coli in mediating a response to a nutritional shift.
    Yanofsky C; Horn V
    J Bacteriol; 1994 Oct; 176(20):6245-54. PubMed ID: 7928995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repression of aromatic amino acid biosynthesis in Escherichia coli K-12.
    Brown KD; Somerville RL
    J Bacteriol; 1971 Oct; 108(1):386-99. PubMed ID: 4399341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli for L-tyrosine production by expression of genes coding for the chorismate mutase domain of the native chorismate mutase-prephenate dehydratase and a cyclohexadienyl dehydrogenase from Zymomonas mobilis.
    Chávez-Béjar MI; Lara AR; López H; Hernández-Chávez G; Martinez A; Ramírez OT; Bolívar F; Gosset G
    Appl Environ Microbiol; 2008 May; 74(10):3284-90. PubMed ID: 18344329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, sequencing, and expression of the P-protein gene (pheA) of Pseudomonas stutzeri in Escherichia coli: implications for evolutionary relationships in phenylalanine biosynthesis.
    Fischer RS; Zhao G; Jensen RA
    J Gen Microbiol; 1991 Jun; 137(6):1293-301. PubMed ID: 1919506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway.
    Fang MY; Zhang C; Yang S; Cui JY; Jiang PX; Lou K; Wachi M; Xing XH
    Microb Cell Fact; 2015 Jan; 14():8. PubMed ID: 25592762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of phenylalanine biosynthesis. Studies on the mechanism of phenylalanine binding and feedback inhibition in the Escherichia coli P-protein.
    Pohnert G; Zhang S; Husain A; Wilson DB; Ganem B
    Biochemistry; 1999 Sep; 38(38):12212-7. PubMed ID: 10493788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.