BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21541744)

  • 1. Investigation of the acylation mechanism of class C beta-lactamase: pKa calculation, molecular dynamics simulation and quantum mechanical calculation.
    Sharma S; Bandyopadhyay P
    J Mol Model; 2012 Feb; 18(2):481-92. PubMed ID: 21541744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deacylation Mechanism and Kinetics of Acyl-Enzyme Complex of Class C β-Lactamase and Cephalothin.
    Tripathi R; Nair NN
    J Phys Chem B; 2016 Mar; 120(10):2681-90. PubMed ID: 26918257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution.
    Chen Y; Minasov G; Roth TA; Prati F; Shoichet BK
    J Am Chem Soc; 2006 Mar; 128(9):2970-6. PubMed ID: 16506777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical study on the substrate deacylation mechanism of class C beta-lactamase.
    Hata M; Tanaka Y; Fujii Y; Neya S; Hoshino T
    J Phys Chem B; 2005 Aug; 109(33):16153-60. PubMed ID: 16853052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of acyl-enzyme complex formation from the Henry-Michaelis complex of class C β-lactamases with β-lactam antibiotics.
    Tripathi R; Nair NN
    J Am Chem Soc; 2013 Oct; 135(39):14679-90. PubMed ID: 24010547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pKa, MM, and QM studies of mechanisms of beta-lactamases and penicillin-binding proteins: acylation step.
    Massova I; Kollman PA
    J Comput Chem; 2002 Dec; 23(16):1559-76. PubMed ID: 12395425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of class C beta-lactamase from Citrobacter freundii: insights into the base catalyst for acylation.
    Díaz N; Suárez D; Sordo TL
    Biochemistry; 2006 Jan; 45(2):439-51. PubMed ID: 16401074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin.
    Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD
    J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical investigation on reaction of sulbactam with wild-type SHV-1 β-lactamase: acylation, tautomerization, and deacylation.
    Li R; Liao JM; Gu CR; Wang YT; Chen CL
    J Phys Chem B; 2011 Sep; 115(34):10298-310. PubMed ID: 21797222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High level QM/MM modeling of the formation of the tetrahedral intermediate in the acylation of wild type and K73A mutant TEM-1 class A beta-lactamase.
    Hermann JC; Pradon J; Harvey JN; Mulholland AJ
    J Phys Chem A; 2009 Oct; 113(43):11984-94. PubMed ID: 19791786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Glu166 as the general base in the acylation reaction of class A beta-lactamases through QM/MM modeling.
    Hermann JC; Ridder L; Mulholland AJ; Höltje HD
    J Am Chem Soc; 2003 Aug; 125(32):9590-1. PubMed ID: 12904016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pKa calculations for class A beta-lactamases: methodological and mechanistic implications.
    Raquet X; Lounnas V; Lamotte-Brasseur J; Frère JM; Wade RC
    Biophys J; 1997 Nov; 73(5):2416-26. PubMed ID: 9370435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free Energy Contribution Analysis Using Response Kernel Approximation: Insights into the Acylation Reaction of a Beta-Lactamase.
    Asada T; Ando K; Bandyopadhyay P; Koseki S
    J Phys Chem B; 2016 Sep; 120(35):9338-46. PubMed ID: 27501066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydrolytic water molecule of Class A β-lactamase relies on the acyl-enzyme intermediate ES* for proper coordination and catalysis.
    He Y; Lei J; Pan X; Huang X; Zhao Y
    Sci Rep; 2020 Jun; 10(1):10205. PubMed ID: 32576842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio QM/MM study of class A beta-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70.
    Meroueh SO; Fisher JF; Schlegel HB; Mobashery S
    J Am Chem Soc; 2005 Nov; 127(44):15397-407. PubMed ID: 16262403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog.
    Lobkovsky E; Billings EM; Moews PC; Rahil J; Pratt RF; Knox JR
    Biochemistry; 1994 Jun; 33(22):6762-72. PubMed ID: 8204611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Delhi metallo-β-lactamase I: substrate binding and catalytic mechanism.
    Zheng M; Xu D
    J Phys Chem B; 2013 Oct; 117(39):11596-607. PubMed ID: 24025144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of class A beta-lactamase. I. The role of Glu166 and Serl30 in the deacylation reaction.
    Hata M; Fujii Y; Ishii M; Hoshino T; Tsuda M
    Chem Pharm Bull (Tokyo); 2000 Apr; 48(4):447-53. PubMed ID: 10783059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping Conformational Dynamics to Individual Steps in the TEM-1 β-Lactamase Catalytic Mechanism.
    Knox R; Lento C; Wilson DJ
    J Mol Biol; 2018 Sep; 430(18 Pt B):3311-3322. PubMed ID: 29964048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallographic Snapshots of Class A β-Lactamase Catalysis Reveal Structural Changes That Facilitate β-Lactam Hydrolysis.
    Pan X; He Y; Lei J; Huang X; Zhao Y
    J Biol Chem; 2017 Mar; 292(10):4022-4033. PubMed ID: 28100776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.