BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21541744)

  • 21. Substrate deacylation mechanisms of serine-beta-lactamases.
    Hata M; Fujii Y; Tanaka Y; Ishikawa H; Ishii M; Neya S; Tsuda M; Hoshino T
    Biol Pharm Bull; 2006 Nov; 29(11):2151-9. PubMed ID: 17077507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic and kinetic stabilities of active site protonation states of class C β-lactamase.
    Tripathi R; Nair NN
    J Phys Chem B; 2012 Apr; 116(16):4741-53. PubMed ID: 22480335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding the acylation mechanisms of active-site serine penicillin-recognizing proteins: a molecular dynamics simulation study.
    Oliva M; Dideberg O; Field MJ
    Proteins; 2003 Oct; 53(1):88-100. PubMed ID: 12945052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for the β-lactamase activity of EstU1, a family VIII carboxylesterase.
    Cha SS; An YJ; Jeong CS; Kim MK; Jeon JH; Lee CM; Lee HS; Kang SG; Lee JH
    Proteins; 2013 Nov; 81(11):2045-51. PubMed ID: 23737193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular insights into avibactam mediated class C β-lactamase inhibition: competition between reverse acylation and hydrolysis through desulfation.
    Das CK; Nair NN
    Phys Chem Chem Phys; 2018 May; 20(21):14482-14490. PubMed ID: 29785432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mixed quantum mechanical/molecular mechanical (QM/MM) study of the deacylation reaction in a penicillin binding protein (PBP) versus in a class C beta-lactamase.
    Gherman BF; Goldberg SD; Cornish VW; Friesner RA
    J Am Chem Soc; 2004 Jun; 126(24):7652-64. PubMed ID: 15198613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of protein flexibility in enzymatic catalysis: quantum mechanical-molecular mechanical study of the deacylation reaction in class A beta-lactamases.
    Castillo R; Silla E; Tuñón I
    J Am Chem Soc; 2002 Feb; 124(8):1809-16. PubMed ID: 11853460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Re-examining the role of Lys67 in class C beta-lactamase catalysis.
    Chen Y; McReynolds A; Shoichet BK
    Protein Sci; 2009 Mar; 18(3):662-9. PubMed ID: 19241376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure, Function of Serine and Metallo-β-lactamases and their Inhibitors.
    Salahuddin P; Kumar A; Khan AU
    Curr Protein Pept Sci; 2018; 19(2):130-144. PubMed ID: 28745223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrostatic analysis of TEM1 beta-lactamase: effect of substrate binding, steep potential gradients and consequences of site-directed mutations.
    Swarén P; Maveyraud L; Guillet V; Masson JM; Mourey L; Samama JP
    Structure; 1995 Jun; 3(6):603-13. PubMed ID: 8590021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The roles of residues Tyr150, Glu272, and His314 in class C beta-lactamases.
    Dubus A; Ledent P; Lamotte-Brasseur J; Frère JM
    Proteins; 1996 Aug; 25(4):473-85. PubMed ID: 8865342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pKa calculations for class A beta-lactamases: influence of substrate binding.
    Lamotte-Brasseur J; Lounnas V; Raquet X; Wade RC
    Protein Sci; 1999 Feb; 8(2):404-9. PubMed ID: 10048333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An ultrahigh resolution structure of TEM-1 beta-lactamase suggests a role for Glu166 as the general base in acylation.
    Minasov G; Wang X; Shoichet BK
    J Am Chem Soc; 2002 May; 124(19):5333-40. PubMed ID: 11996574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A QM/MM study on the enzymatic inactivation of cefotaxime.
    Lizana I; Delgado EJ
    J Mol Model; 2017 Jul; 23(7):209. PubMed ID: 28638992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidating the Molecular Basis of Avibactam-Mediated Inhibition of Class A β-Lactamases.
    Das CK; Nair NN
    Chemistry; 2020 Aug; 26(43):9639-9651. PubMed ID: 32285965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography.
    Vandavasi VG; Weiss KL; Cooper JB; Erskine PT; Tomanicek SJ; Ostermann A; Schrader TE; Ginell SL; Coates L
    J Med Chem; 2016 Jan; 59(1):474-9. PubMed ID: 26630115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of proton transfer in class A β-lactamase catalysis and inhibition by avibactam.
    Pemberton OA; Noor RE; Kumar M V V; Sanishvili R; Kemp MT; Kearns FL; Woodcock HL; Gelis I; Chen Y
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5818-5825. PubMed ID: 32123084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neutron and X-ray crystal structures of a perdeuterated enzyme inhibitor complex reveal the catalytic proton network of the Toho-1 β-lactamase for the acylation reaction.
    Tomanicek SJ; Standaert RF; Weiss KL; Ostermann A; Schrader TE; Ng JD; Coates L
    J Biol Chem; 2013 Feb; 288(7):4715-22. PubMed ID: 23255594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem.
    Pernot L; Frénois F; Rybkine T; L'Hermite G; Petrella S; Delettré J; Jarlier V; Collatz E; Sougakoff W
    J Mol Biol; 2001 Jul; 310(4):859-74. PubMed ID: 11453693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel inhibition mechanism of carbapenems on the ACC-1 class C β-lactamase.
    Bae DW; Jung YE; Jeong BG; Cha SS
    Arch Biochem Biophys; 2020 Oct; 693():108570. PubMed ID: 32888908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.